Matches in SemOpenAlex for { <https://semopenalex.org/work/W2773352017> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2773352017 abstract "Band selection is a very important hyperspectral image preprocessing before using data. A novel bands selection method for hyperspectral data based on convolutional neural network (CNN) is proposed in this paper. In this way, we use a custom one-dimensional CNN to train the hyperspectral data to obtain a well-trained model. After testing band combinations, we use the model to obtain the test precision of the different band combinations, and finally use the band combination with the highest precision as the selected bands. This precision measure is a new criterion for band selection. This is the first application of CNN to band selection, and our proposed method can select the better combinations of band for specific problems. In the experiments, we select the bands on the Indian Pines dataset. The experimental results show that the proposed method can acquire satisfactory results when compared with traditional methods." @default.
- W2773352017 created "2017-12-22" @default.
- W2773352017 creator A5007640666 @default.
- W2773352017 creator A5008606791 @default.
- W2773352017 creator A5029483722 @default.
- W2773352017 creator A5046153352 @default.
- W2773352017 creator A5055523859 @default.
- W2773352017 creator A5057083556 @default.
- W2773352017 creator A5071037763 @default.
- W2773352017 creator A5074672186 @default.
- W2773352017 date "2017-07-01" @default.
- W2773352017 modified "2023-10-18" @default.
- W2773352017 title "A new hyperspectral band selection approach based on convolutional neural network" @default.
- W2773352017 cites W1966580635 @default.
- W2773352017 cites W1994682246 @default.
- W2773352017 cites W2042294722 @default.
- W2773352017 cites W2138038253 @default.
- W2773352017 cites W2150566919 @default.
- W2773352017 cites W2150990614 @default.
- W2773352017 cites W2292865806 @default.
- W2773352017 cites W2294445779 @default.
- W2773352017 cites W2314785379 @default.
- W2773352017 cites W2412588858 @default.
- W2773352017 cites W2500751094 @default.
- W2773352017 cites W2547873948 @default.
- W2773352017 doi "https://doi.org/10.1109/igarss.2017.8127792" @default.
- W2773352017 hasPublicationYear "2017" @default.
- W2773352017 type Work @default.
- W2773352017 sameAs 2773352017 @default.
- W2773352017 citedByCount "10" @default.
- W2773352017 countsByYear W27733520172017 @default.
- W2773352017 countsByYear W27733520172019 @default.
- W2773352017 countsByYear W27733520172020 @default.
- W2773352017 countsByYear W27733520172021 @default.
- W2773352017 countsByYear W27733520172022 @default.
- W2773352017 countsByYear W27733520172023 @default.
- W2773352017 crossrefType "proceedings-article" @default.
- W2773352017 hasAuthorship W2773352017A5007640666 @default.
- W2773352017 hasAuthorship W2773352017A5008606791 @default.
- W2773352017 hasAuthorship W2773352017A5029483722 @default.
- W2773352017 hasAuthorship W2773352017A5046153352 @default.
- W2773352017 hasAuthorship W2773352017A5055523859 @default.
- W2773352017 hasAuthorship W2773352017A5057083556 @default.
- W2773352017 hasAuthorship W2773352017A5071037763 @default.
- W2773352017 hasAuthorship W2773352017A5074672186 @default.
- W2773352017 hasConcept C10551718 @default.
- W2773352017 hasConcept C124101348 @default.
- W2773352017 hasConcept C153180895 @default.
- W2773352017 hasConcept C154945302 @default.
- W2773352017 hasConcept C159078339 @default.
- W2773352017 hasConcept C34736171 @default.
- W2773352017 hasConcept C41008148 @default.
- W2773352017 hasConcept C50644808 @default.
- W2773352017 hasConcept C81363708 @default.
- W2773352017 hasConcept C81917197 @default.
- W2773352017 hasConceptScore W2773352017C10551718 @default.
- W2773352017 hasConceptScore W2773352017C124101348 @default.
- W2773352017 hasConceptScore W2773352017C153180895 @default.
- W2773352017 hasConceptScore W2773352017C154945302 @default.
- W2773352017 hasConceptScore W2773352017C159078339 @default.
- W2773352017 hasConceptScore W2773352017C34736171 @default.
- W2773352017 hasConceptScore W2773352017C41008148 @default.
- W2773352017 hasConceptScore W2773352017C50644808 @default.
- W2773352017 hasConceptScore W2773352017C81363708 @default.
- W2773352017 hasConceptScore W2773352017C81917197 @default.
- W2773352017 hasLocation W27733520171 @default.
- W2773352017 hasOpenAccess W2773352017 @default.
- W2773352017 hasPrimaryLocation W27733520171 @default.
- W2773352017 hasRelatedWork W2028628118 @default.
- W2773352017 hasRelatedWork W2352172886 @default.
- W2773352017 hasRelatedWork W2373749036 @default.
- W2773352017 hasRelatedWork W2766300339 @default.
- W2773352017 hasRelatedWork W2781623059 @default.
- W2773352017 hasRelatedWork W2952736244 @default.
- W2773352017 hasRelatedWork W3092506759 @default.
- W2773352017 hasRelatedWork W3158671570 @default.
- W2773352017 hasRelatedWork W3173596272 @default.
- W2773352017 hasRelatedWork W4248881655 @default.
- W2773352017 isParatext "false" @default.
- W2773352017 isRetracted "false" @default.
- W2773352017 magId "2773352017" @default.
- W2773352017 workType "article" @default.