Matches in SemOpenAlex for { <https://semopenalex.org/work/W2773385890> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2773385890 abstract "Author(s): Holbrook, Stephen R.; Dubchak, Inna L.; Carter, Richard J. | Abstract: In light of recent discoveries of its roles in varied cellular processes, RNA has become an exciting therapeutic target. The identification of potential RNA targets would allow a corresponding development of novel therapeutic approaches. Until recently, there has been no successful computational approach for identification of genes encoding novel functional RNAs (fRNAs) in genomic sequences. We have developed a machine learning approach that contrasts known RNA and non-coding sequences to extract common features that can distinguish functional RNAs. These trained computational machines are then used for prediction of new RNA genes in the unannotated regions of prokaryotic and archaeal gemones. The E. coli genome was used for development, but we have applied this method to several other bacterial and archaeal genomes. Computational neural networks based on nucleotide composition were 80-90% accurate in jackknife testing experiments for bacteria and 90-99% for hyperthermophilic archaea. We also achieved a significant in accuracy by combining these predictions with those obtained using a second set of parameters consisting of known RNA sequence/structure motifs and the calculated free energy of folding. Several known fRNAs not included in the training datasets were identified as well as several hundred predicted novel RNAs. These studies indicate that there are many unidentified RNAs in simple genomes that can be predicted computationally as a precursor to experimental study. We also noted that in several cases functional segments in the untranslated regions of mRNA were correctly identified by our networks. Preliminary results indicate that the method is applicable to fRNA prediction in higher organisms, including the human genome. The method, which is simple to run and is available via the web (http://rnagene.lbl.gov), may yield the discovery of thousands of novel fRNAs in these higher organisms." @default.
- W2773385890 created "2017-12-22" @default.
- W2773385890 creator A5004722110 @default.
- W2773385890 creator A5026743046 @default.
- W2773385890 creator A5080514749 @default.
- W2773385890 date "2001-11-12" @default.
- W2773385890 modified "2023-09-24" @default.
- W2773385890 title "Discovering new RNA targets in Genomic DNA" @default.
- W2773385890 hasPublicationYear "2001" @default.
- W2773385890 type Work @default.
- W2773385890 sameAs 2773385890 @default.
- W2773385890 citedByCount "0" @default.
- W2773385890 crossrefType "journal-article" @default.
- W2773385890 hasAuthorship W2773385890A5004722110 @default.
- W2773385890 hasAuthorship W2773385890A5026743046 @default.
- W2773385890 hasAuthorship W2773385890A5080514749 @default.
- W2773385890 hasConcept C104317684 @default.
- W2773385890 hasConcept C141231307 @default.
- W2773385890 hasConcept C194993378 @default.
- W2773385890 hasConcept C54355233 @default.
- W2773385890 hasConcept C550995028 @default.
- W2773385890 hasConcept C67705224 @default.
- W2773385890 hasConcept C70721500 @default.
- W2773385890 hasConcept C86803240 @default.
- W2773385890 hasConcept C89604277 @default.
- W2773385890 hasConceptScore W2773385890C104317684 @default.
- W2773385890 hasConceptScore W2773385890C141231307 @default.
- W2773385890 hasConceptScore W2773385890C194993378 @default.
- W2773385890 hasConceptScore W2773385890C54355233 @default.
- W2773385890 hasConceptScore W2773385890C550995028 @default.
- W2773385890 hasConceptScore W2773385890C67705224 @default.
- W2773385890 hasConceptScore W2773385890C70721500 @default.
- W2773385890 hasConceptScore W2773385890C86803240 @default.
- W2773385890 hasConceptScore W2773385890C89604277 @default.
- W2773385890 hasLocation W27733858901 @default.
- W2773385890 hasOpenAccess W2773385890 @default.
- W2773385890 hasPrimaryLocation W27733858901 @default.
- W2773385890 hasRelatedWork W1936164116 @default.
- W2773385890 hasRelatedWork W1979439823 @default.
- W2773385890 hasRelatedWork W1982501766 @default.
- W2773385890 hasRelatedWork W2012739246 @default.
- W2773385890 hasRelatedWork W2020021066 @default.
- W2773385890 hasRelatedWork W2059443835 @default.
- W2773385890 hasRelatedWork W2071656143 @default.
- W2773385890 hasRelatedWork W2073982917 @default.
- W2773385890 hasRelatedWork W2109839420 @default.
- W2773385890 hasRelatedWork W2121155509 @default.
- W2773385890 hasRelatedWork W2123047239 @default.
- W2773385890 hasRelatedWork W2142215914 @default.
- W2773385890 hasRelatedWork W2146831994 @default.
- W2773385890 hasRelatedWork W2150965110 @default.
- W2773385890 hasRelatedWork W2309947189 @default.
- W2773385890 hasRelatedWork W2512299449 @default.
- W2773385890 hasRelatedWork W2549292360 @default.
- W2773385890 hasRelatedWork W2578553558 @default.
- W2773385890 hasRelatedWork W2805467558 @default.
- W2773385890 hasRelatedWork W2886164747 @default.
- W2773385890 isParatext "false" @default.
- W2773385890 isRetracted "false" @default.
- W2773385890 magId "2773385890" @default.
- W2773385890 workType "article" @default.