Matches in SemOpenAlex for { <https://semopenalex.org/work/W2773444615> ?p ?o ?g. }
- W2773444615 endingPage "1061" @default.
- W2773444615 startingPage "1045" @default.
- W2773444615 abstract "Nowadays, face milling is one of the most widely used machining processes for the generation of flat surfaces. Following international standards, the quality of a machined surface is measured in terms of surface roughness, Ra, a parameter that will decrease with increased tool wear. So, cutting inserts of the milling tool have to be changed before a given surface quality threshold is exceeded. The use of artificial intelligence methods is suggested in this paper for real-time prediction of surface roughness deviations, depending on the main drive power, and taking tool wear, $$V_{B}$$ into account. This method ensures comprehensive use of the potential of modern CNC machines that are able to monitor the main drive power, N, in real-time. It can likewise estimate the three parameters -maximum tool wear, machining time, and cutting power- that are required to generate a given surface roughness, thereby making the most efficient use of the cutting tool. A series of artificial intelligence methods are tested: random forest (RF), standard Multilayer perceptrons (MLP), Regression Trees, and radial-based functions. Random forest was shown to have the highest model accuracy, followed by regression trees, displaying higher accuracy than the standard MLP and the radial-basis function. Moreover, RF techniques are easily tuned and generate visual information for direct use by the process engineer, such as the linear relationships between process parameters and roughness, and thresholds for avoiding rapid tool wear. All of this information can be directly extracted from the tree structure or by drawing 3D charts plotting two process inputs and the predicted roughness depending on workshop requirements." @default.
- W2773444615 created "2017-12-22" @default.
- W2773444615 creator A5039427014 @default.
- W2773444615 creator A5064369563 @default.
- W2773444615 creator A5066570575 @default.
- W2773444615 date "2017-12-15" @default.
- W2773444615 modified "2023-10-16" @default.
- W2773444615 title "Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth" @default.
- W2773444615 cites W1571593100 @default.
- W2773444615 cites W1882771481 @default.
- W2773444615 cites W1966754268 @default.
- W2773444615 cites W1968072974 @default.
- W2773444615 cites W1971335110 @default.
- W2773444615 cites W1978754518 @default.
- W2773444615 cites W1983430914 @default.
- W2773444615 cites W1985868675 @default.
- W2773444615 cites W1995983215 @default.
- W2773444615 cites W2007294713 @default.
- W2773444615 cites W2012863373 @default.
- W2773444615 cites W2022699427 @default.
- W2773444615 cites W2024409405 @default.
- W2773444615 cites W2028103050 @default.
- W2773444615 cites W2029604671 @default.
- W2773444615 cites W2030462641 @default.
- W2773444615 cites W2030642697 @default.
- W2773444615 cites W2030910081 @default.
- W2773444615 cites W2032596512 @default.
- W2773444615 cites W2033138483 @default.
- W2773444615 cites W2034546412 @default.
- W2773444615 cites W2036644827 @default.
- W2773444615 cites W2038479731 @default.
- W2773444615 cites W2038499701 @default.
- W2773444615 cites W2042644877 @default.
- W2773444615 cites W2045808613 @default.
- W2773444615 cites W2047046318 @default.
- W2773444615 cites W2052939368 @default.
- W2773444615 cites W2053462781 @default.
- W2773444615 cites W2053922876 @default.
- W2773444615 cites W2061082730 @default.
- W2773444615 cites W2063858879 @default.
- W2773444615 cites W2074154425 @default.
- W2773444615 cites W2076997756 @default.
- W2773444615 cites W2079589947 @default.
- W2773444615 cites W2081664861 @default.
- W2773444615 cites W2083211600 @default.
- W2773444615 cites W2090883678 @default.
- W2773444615 cites W2090965007 @default.
- W2773444615 cites W2091630995 @default.
- W2773444615 cites W2091823492 @default.
- W2773444615 cites W2092747913 @default.
- W2773444615 cites W2120199131 @default.
- W2773444615 cites W2121753122 @default.
- W2773444615 cites W2133990480 @default.
- W2773444615 cites W2136459762 @default.
- W2773444615 cites W2142972827 @default.
- W2773444615 cites W2152081686 @default.
- W2773444615 cites W2235452348 @default.
- W2773444615 cites W2273415777 @default.
- W2773444615 cites W2282743221 @default.
- W2773444615 cites W2318374746 @default.
- W2773444615 cites W2332456801 @default.
- W2773444615 cites W2337994034 @default.
- W2773444615 cites W2338816041 @default.
- W2773444615 cites W2489173095 @default.
- W2773444615 cites W2509578631 @default.
- W2773444615 cites W2517879680 @default.
- W2773444615 cites W2535613811 @default.
- W2773444615 cites W2542763271 @default.
- W2773444615 cites W2548399677 @default.
- W2773444615 cites W2557352794 @default.
- W2773444615 cites W2558443896 @default.
- W2773444615 cites W2573246239 @default.
- W2773444615 cites W2577509885 @default.
- W2773444615 cites W2581235171 @default.
- W2773444615 cites W2591260772 @default.
- W2773444615 cites W2598529882 @default.
- W2773444615 cites W2611951844 @default.
- W2773444615 cites W2612370827 @default.
- W2773444615 cites W2754173381 @default.
- W2773444615 cites W2768108646 @default.
- W2773444615 cites W2911964244 @default.
- W2773444615 cites W3033235833 @default.
- W2773444615 cites W4237349941 @default.
- W2773444615 cites W4248018214 @default.
- W2773444615 cites W601445091 @default.
- W2773444615 doi "https://doi.org/10.1007/s10845-017-1381-8" @default.
- W2773444615 hasPublicationYear "2017" @default.
- W2773444615 type Work @default.
- W2773444615 sameAs 2773444615 @default.
- W2773444615 citedByCount "130" @default.
- W2773444615 countsByYear W27734446152018 @default.
- W2773444615 countsByYear W27734446152019 @default.
- W2773444615 countsByYear W27734446152020 @default.
- W2773444615 countsByYear W27734446152021 @default.
- W2773444615 countsByYear W27734446152022 @default.
- W2773444615 countsByYear W27734446152023 @default.
- W2773444615 crossrefType "journal-article" @default.
- W2773444615 hasAuthorship W2773444615A5039427014 @default.