Matches in SemOpenAlex for { <https://semopenalex.org/work/W2773584821> ?p ?o ?g. }
- W2773584821 abstract "Recent advances in visual recognition show overarching success by virtue of large amounts of supervised data. However, the acquisition of a large supervised dataset is often challenging. This is also true for intelligent transportation applications, i.e., traffic sign recognition. For example, a model trained with data of one country may not be easily generalized to another country without much data. We propose a novel feature embedding scheme for unseen class classification when the representative class template is given. Traffic signs, unlike other objects, have official images. We perform co-domain embedding using a quadruple relationship from real and synthetic domains. Our quadruplet network fully utilizes the explicit pairwise similarity relationships among samples from different domains. We validate our method on three datasets with two experiments involving one-shot classification and feature generalization. The results show that the proposed method outperforms competing approaches on both seen and unseen classes." @default.
- W2773584821 created "2017-12-22" @default.
- W2773584821 creator A5000906921 @default.
- W2773584821 creator A5008585354 @default.
- W2773584821 creator A5012455275 @default.
- W2773584821 creator A5078114111 @default.
- W2773584821 date "2018-04-27" @default.
- W2773584821 modified "2023-09-30" @default.
- W2773584821 title "Co-Domain Embedding Using Deep Quadruplet Networks for Unseen Traffic Sign Recognition" @default.
- W2773584821 cites W1522734439 @default.
- W2773584821 cites W1689445748 @default.
- W2773584821 cites W205159212 @default.
- W2773584821 cites W2067713319 @default.
- W2773584821 cites W2106053110 @default.
- W2773584821 cites W2121949863 @default.
- W2773584821 cites W2127589108 @default.
- W2773584821 cites W2133774033 @default.
- W2773584821 cites W2135624716 @default.
- W2773584821 cites W2138621090 @default.
- W2773584821 cites W2144935315 @default.
- W2773584821 cites W2153635508 @default.
- W2773584821 cites W2155541015 @default.
- W2773584821 cites W2182206537 @default.
- W2773584821 cites W2194321275 @default.
- W2773584821 cites W2432717477 @default.
- W2773584821 cites W2469455946 @default.
- W2773584821 cites W2472819217 @default.
- W2773584821 cites W2557283755 @default.
- W2773584821 cites W2753160622 @default.
- W2773584821 cites W2756202949 @default.
- W2773584821 cites W2950527759 @default.
- W2773584821 cites W2963775347 @default.
- W2773584821 cites W3091905774 @default.
- W2773584821 cites W753012316 @default.
- W2773584821 doi "https://doi.org/10.1609/aaai.v32i1.12323" @default.
- W2773584821 hasPublicationYear "2018" @default.
- W2773584821 type Work @default.
- W2773584821 sameAs 2773584821 @default.
- W2773584821 citedByCount "11" @default.
- W2773584821 countsByYear W27735848212019 @default.
- W2773584821 countsByYear W27735848212020 @default.
- W2773584821 countsByYear W27735848212021 @default.
- W2773584821 countsByYear W27735848212022 @default.
- W2773584821 countsByYear W27735848212023 @default.
- W2773584821 crossrefType "journal-article" @default.
- W2773584821 hasAuthorship W2773584821A5000906921 @default.
- W2773584821 hasAuthorship W2773584821A5008585354 @default.
- W2773584821 hasAuthorship W2773584821A5012455275 @default.
- W2773584821 hasAuthorship W2773584821A5078114111 @default.
- W2773584821 hasBestOaLocation W27735848211 @default.
- W2773584821 hasConcept C103278499 @default.
- W2773584821 hasConcept C115961682 @default.
- W2773584821 hasConcept C119857082 @default.
- W2773584821 hasConcept C134306372 @default.
- W2773584821 hasConcept C138885662 @default.
- W2773584821 hasConcept C139676723 @default.
- W2773584821 hasConcept C153180895 @default.
- W2773584821 hasConcept C154945302 @default.
- W2773584821 hasConcept C160920958 @default.
- W2773584821 hasConcept C177148314 @default.
- W2773584821 hasConcept C184898388 @default.
- W2773584821 hasConcept C2776401178 @default.
- W2773584821 hasConcept C2777212361 @default.
- W2773584821 hasConcept C2983860417 @default.
- W2773584821 hasConcept C33923547 @default.
- W2773584821 hasConcept C36503486 @default.
- W2773584821 hasConcept C41008148 @default.
- W2773584821 hasConcept C41608201 @default.
- W2773584821 hasConcept C41895202 @default.
- W2773584821 hasConcept C6528762 @default.
- W2773584821 hasConceptScore W2773584821C103278499 @default.
- W2773584821 hasConceptScore W2773584821C115961682 @default.
- W2773584821 hasConceptScore W2773584821C119857082 @default.
- W2773584821 hasConceptScore W2773584821C134306372 @default.
- W2773584821 hasConceptScore W2773584821C138885662 @default.
- W2773584821 hasConceptScore W2773584821C139676723 @default.
- W2773584821 hasConceptScore W2773584821C153180895 @default.
- W2773584821 hasConceptScore W2773584821C154945302 @default.
- W2773584821 hasConceptScore W2773584821C160920958 @default.
- W2773584821 hasConceptScore W2773584821C177148314 @default.
- W2773584821 hasConceptScore W2773584821C184898388 @default.
- W2773584821 hasConceptScore W2773584821C2776401178 @default.
- W2773584821 hasConceptScore W2773584821C2777212361 @default.
- W2773584821 hasConceptScore W2773584821C2983860417 @default.
- W2773584821 hasConceptScore W2773584821C33923547 @default.
- W2773584821 hasConceptScore W2773584821C36503486 @default.
- W2773584821 hasConceptScore W2773584821C41008148 @default.
- W2773584821 hasConceptScore W2773584821C41608201 @default.
- W2773584821 hasConceptScore W2773584821C41895202 @default.
- W2773584821 hasConceptScore W2773584821C6528762 @default.
- W2773584821 hasIssue "1" @default.
- W2773584821 hasLocation W27735848211 @default.
- W2773584821 hasLocation W27735848212 @default.
- W2773584821 hasOpenAccess W2773584821 @default.
- W2773584821 hasPrimaryLocation W27735848211 @default.
- W2773584821 hasRelatedWork W2079555348 @default.
- W2773584821 hasRelatedWork W2096020108 @default.
- W2773584821 hasRelatedWork W2104761490 @default.
- W2773584821 hasRelatedWork W2147662716 @default.
- W2773584821 hasRelatedWork W2178080893 @default.