Matches in SemOpenAlex for { <https://semopenalex.org/work/W2773603211> ?p ?o ?g. }
- W2773603211 endingPage "30" @default.
- W2773603211 startingPage "17" @default.
- W2773603211 abstract "Polynomial chaos expansion (PCE) is widely used by engineers and modelers in various engineering fields for uncertainty analysis. The computational cost of full PCE is unaffordable for the “curse of dimensionality” of the expansion coefficients. In this paper, a new method for developing sparse PCE is proposed based on the diffeomorphic modulation under observable response preserving homotopy (D-MORPH) algorithm. D-MORPH is a regression technique, it can construct the full PCE models with model evaluations much less than the unknown coefficients. This technique determines the unknown coefficients by minimizing the least-squared error and an objective function. For the purpose of developing sparse PCE, an iterative reweighted algorithm is proposed to construct the objective function. As a result, the objective in D-MORPH regression is converted to minimize the ℓ1 norm of PCE coefficients, and the sparse PCE is established after the proposed algorithm converges to the optimal value. To validate the performance of the developed methodology, several benchmark examples are investigated. The accuracy and efficiency are compared to the well-established least angle regression (LAR) sparse PCE, and results show that the developed method is superior to the LAR-based sparse PCE in terms of efficiency and accuracy." @default.
- W2773603211 created "2017-12-22" @default.
- W2773603211 creator A5012721295 @default.
- W2773603211 creator A5031417213 @default.
- W2773603211 date "2018-04-01" @default.
- W2773603211 modified "2023-10-11" @default.
- W2773603211 title "Sparse polynomial chaos expansion based on D-MORPH regression" @default.
- W2773603211 cites W1493879008 @default.
- W2773603211 cites W1966495773 @default.
- W2773603211 cites W1972191164 @default.
- W2773603211 cites W1978459922 @default.
- W2773603211 cites W1984320340 @default.
- W2773603211 cites W1987464754 @default.
- W2773603211 cites W1996287810 @default.
- W2773603211 cites W2005082281 @default.
- W2773603211 cites W2015418199 @default.
- W2773603211 cites W2018159038 @default.
- W2773603211 cites W2028738140 @default.
- W2773603211 cites W2045355467 @default.
- W2773603211 cites W2049774453 @default.
- W2773603211 cites W2067029773 @default.
- W2773603211 cites W2069065855 @default.
- W2773603211 cites W2081082425 @default.
- W2773603211 cites W2083042020 @default.
- W2773603211 cites W2088954976 @default.
- W2773603211 cites W2092047866 @default.
- W2773603211 cites W2097927798 @default.
- W2773603211 cites W2137198385 @default.
- W2773603211 cites W2141454789 @default.
- W2773603211 cites W2142058898 @default.
- W2773603211 cites W2147656689 @default.
- W2773603211 cites W2158348603 @default.
- W2773603211 cites W2256942714 @default.
- W2773603211 cites W2277932843 @default.
- W2773603211 cites W2321957512 @default.
- W2773603211 cites W2337712807 @default.
- W2773603211 cites W2345643602 @default.
- W2773603211 cites W2416126149 @default.
- W2773603211 cites W2418610392 @default.
- W2773603211 cites W2514092491 @default.
- W2773603211 cites W2532481546 @default.
- W2773603211 cites W2564963919 @default.
- W2773603211 cites W2587346616 @default.
- W2773603211 cites W2606032898 @default.
- W2773603211 cites W2616626757 @default.
- W2773603211 cites W2618422357 @default.
- W2773603211 cites W590241356 @default.
- W2773603211 cites W819580169 @default.
- W2773603211 doi "https://doi.org/10.1016/j.amc.2017.11.044" @default.
- W2773603211 hasPublicationYear "2018" @default.
- W2773603211 type Work @default.
- W2773603211 sameAs 2773603211 @default.
- W2773603211 citedByCount "25" @default.
- W2773603211 countsByYear W27736032112018 @default.
- W2773603211 countsByYear W27736032112019 @default.
- W2773603211 countsByYear W27736032112020 @default.
- W2773603211 countsByYear W27736032112021 @default.
- W2773603211 countsByYear W27736032112022 @default.
- W2773603211 crossrefType "journal-article" @default.
- W2773603211 hasAuthorship W2773603211A5012721295 @default.
- W2773603211 hasAuthorship W2773603211A5031417213 @default.
- W2773603211 hasConcept C105795698 @default.
- W2773603211 hasConcept C111030470 @default.
- W2773603211 hasConcept C11413529 @default.
- W2773603211 hasConcept C126255220 @default.
- W2773603211 hasConcept C13280743 @default.
- W2773603211 hasConcept C134306372 @default.
- W2773603211 hasConcept C14036430 @default.
- W2773603211 hasConcept C154945302 @default.
- W2773603211 hasConcept C17744445 @default.
- W2773603211 hasConcept C185798385 @default.
- W2773603211 hasConcept C191795146 @default.
- W2773603211 hasConcept C19499675 @default.
- W2773603211 hasConcept C197656079 @default.
- W2773603211 hasConcept C199539241 @default.
- W2773603211 hasConcept C202444582 @default.
- W2773603211 hasConcept C205649164 @default.
- W2773603211 hasConcept C28826006 @default.
- W2773603211 hasConcept C33923547 @default.
- W2773603211 hasConcept C41008148 @default.
- W2773603211 hasConcept C5961521 @default.
- W2773603211 hasConcept C78458016 @default.
- W2773603211 hasConcept C83546350 @default.
- W2773603211 hasConcept C86803240 @default.
- W2773603211 hasConcept C90119067 @default.
- W2773603211 hasConceptScore W2773603211C105795698 @default.
- W2773603211 hasConceptScore W2773603211C111030470 @default.
- W2773603211 hasConceptScore W2773603211C11413529 @default.
- W2773603211 hasConceptScore W2773603211C126255220 @default.
- W2773603211 hasConceptScore W2773603211C13280743 @default.
- W2773603211 hasConceptScore W2773603211C134306372 @default.
- W2773603211 hasConceptScore W2773603211C14036430 @default.
- W2773603211 hasConceptScore W2773603211C154945302 @default.
- W2773603211 hasConceptScore W2773603211C17744445 @default.
- W2773603211 hasConceptScore W2773603211C185798385 @default.
- W2773603211 hasConceptScore W2773603211C191795146 @default.
- W2773603211 hasConceptScore W2773603211C19499675 @default.
- W2773603211 hasConceptScore W2773603211C197656079 @default.