Matches in SemOpenAlex for { <https://semopenalex.org/work/W2773635712> ?p ?o ?g. }
- W2773635712 endingPage "1313" @default.
- W2773635712 startingPage "1313" @default.
- W2773635712 abstract "Month-to-month air temperature (Tair) surfaces are increasingly demanded to feed quantitative models related to a wide range of fields, such as hydrology, ecology or climate change studies. Geostatistical interpolation techniques provide such continuous and objective surfaces of climate variables, while the use of remote sensing data may improve the estimates, especially when temporal resolution is detailed enough. The main goal of this study is to propose an empirical methodology for improving the month-to-month Tair mapping (minimum and maximum) using satellite land surface temperatures (LST) besides of meteorological data and geographic information. The methodology consists on multiple regression analysis combined with the spatial interpolation of residual errors using the inverse distance weighting. A leave-one-out cross-validation procedure has been included in order to compare predicted with observed values. Different operational daytime and nighttime LST products corresponding to the four months more characteristic of the seasonal dynamics of a Mediterranean climate have been considered for a thirteen-year period. The results can be considered operational given the feasibility of the models employed (linear dependence on predictors that are nowadays easily available), the robustness of the leave-one-out cross-validation procedure and the improvement in accuracy achieved when compared to classical Tair modeling results. Unlike what is considered by most studies, it is shown that nighttime LST provides a good proxy not only for minimum Tair, but also for maximum Tair. The improvement achieved by the inclusion of remote sensing LST products was higher for minimum Tair (up to 0.35 K on December), especially over forests and rugged lands. Results are really encouraging, as there are generally few meteorological stations in zones with these characteristics, clearly showing the usefulness of remote sensing to improve information about areas that are difficult to access or simply with a poor availability of conventional meteorological data." @default.
- W2773635712 created "2017-12-22" @default.
- W2773635712 creator A5042644387 @default.
- W2773635712 creator A5045397150 @default.
- W2773635712 creator A5058162156 @default.
- W2773635712 creator A5062697913 @default.
- W2773635712 creator A5084960610 @default.
- W2773635712 date "2017-12-14" @default.
- W2773635712 modified "2023-10-16" @default.
- W2773635712 title "Improving Mean Minimum and Maximum Month-to-Month Air Temperature Surfaces Using Satellite-Derived Land Surface Temperature" @default.
- W2773635712 cites W1966948519 @default.
- W2773635712 cites W1967802619 @default.
- W2773635712 cites W1970171493 @default.
- W2773635712 cites W1971429875 @default.
- W2773635712 cites W1980320347 @default.
- W2773635712 cites W1983934822 @default.
- W2773635712 cites W1986013503 @default.
- W2773635712 cites W1995282508 @default.
- W2773635712 cites W1995303152 @default.
- W2773635712 cites W2000938259 @default.
- W2773635712 cites W2006476353 @default.
- W2773635712 cites W2007519570 @default.
- W2773635712 cites W2009563371 @default.
- W2773635712 cites W2011195592 @default.
- W2773635712 cites W2012147369 @default.
- W2773635712 cites W2015293234 @default.
- W2773635712 cites W2015379369 @default.
- W2773635712 cites W2017214666 @default.
- W2773635712 cites W2018097694 @default.
- W2773635712 cites W2020977453 @default.
- W2773635712 cites W2029459799 @default.
- W2773635712 cites W2029660080 @default.
- W2773635712 cites W2033057948 @default.
- W2773635712 cites W2038803369 @default.
- W2773635712 cites W2039579272 @default.
- W2773635712 cites W2043253630 @default.
- W2773635712 cites W2044498659 @default.
- W2773635712 cites W2048850076 @default.
- W2773635712 cites W2053683629 @default.
- W2773635712 cites W2069642449 @default.
- W2773635712 cites W2069981052 @default.
- W2773635712 cites W2075573792 @default.
- W2773635712 cites W2084659027 @default.
- W2773635712 cites W2092427942 @default.
- W2773635712 cites W2093589181 @default.
- W2773635712 cites W2117422131 @default.
- W2773635712 cites W2121362301 @default.
- W2773635712 cites W2145759482 @default.
- W2773635712 cites W2147521062 @default.
- W2773635712 cites W2148595405 @default.
- W2773635712 cites W2162221413 @default.
- W2773635712 cites W2165028274 @default.
- W2773635712 cites W2169278316 @default.
- W2773635712 cites W2175588072 @default.
- W2773635712 cites W2242994172 @default.
- W2773635712 cites W2279307191 @default.
- W2773635712 cites W2414411043 @default.
- W2773635712 cites W2516603452 @default.
- W2773635712 cites W2560156413 @default.
- W2773635712 cites W2593897723 @default.
- W2773635712 cites W2608328377 @default.
- W2773635712 doi "https://doi.org/10.3390/rs9121313" @default.
- W2773635712 hasPublicationYear "2017" @default.
- W2773635712 type Work @default.
- W2773635712 sameAs 2773635712 @default.
- W2773635712 citedByCount "15" @default.
- W2773635712 countsByYear W27736357122018 @default.
- W2773635712 countsByYear W27736357122019 @default.
- W2773635712 countsByYear W27736357122020 @default.
- W2773635712 countsByYear W27736357122021 @default.
- W2773635712 countsByYear W27736357122022 @default.
- W2773635712 countsByYear W27736357122023 @default.
- W2773635712 crossrefType "journal-article" @default.
- W2773635712 hasAuthorship W2773635712A5042644387 @default.
- W2773635712 hasAuthorship W2773635712A5045397150 @default.
- W2773635712 hasAuthorship W2773635712A5058162156 @default.
- W2773635712 hasAuthorship W2773635712A5062697913 @default.
- W2773635712 hasAuthorship W2773635712A5084960610 @default.
- W2773635712 hasBestOaLocation W27736357121 @default.
- W2773635712 hasConcept C105795698 @default.
- W2773635712 hasConcept C126838900 @default.
- W2773635712 hasConcept C127313418 @default.
- W2773635712 hasConcept C127413603 @default.
- W2773635712 hasConcept C146978453 @default.
- W2773635712 hasConcept C153294291 @default.
- W2773635712 hasConcept C183115368 @default.
- W2773635712 hasConcept C19269812 @default.
- W2773635712 hasConcept C203332170 @default.
- W2773635712 hasConcept C205203396 @default.
- W2773635712 hasConcept C205649164 @default.
- W2773635712 hasConcept C33923547 @default.
- W2773635712 hasConcept C39432304 @default.
- W2773635712 hasConcept C47872207 @default.
- W2773635712 hasConcept C48921125 @default.
- W2773635712 hasConcept C62649853 @default.
- W2773635712 hasConcept C71924100 @default.
- W2773635712 hasConcept C91586092 @default.
- W2773635712 hasConceptScore W2773635712C105795698 @default.