Matches in SemOpenAlex for { <https://semopenalex.org/work/W2773789527> ?p ?o ?g. }
- W2773789527 endingPage "80" @default.
- W2773789527 startingPage "68" @default.
- W2773789527 abstract "The design, operation, and control of chemical separation processes heavily rely on the knowledge of the vapor-liquid equilibrium (VLE). Often, conducting experiments to gain an insight into the separation behavior becomes tedious and expensive. Thus, standard thermodynamic models are used in the VLE prediction. Sometimes, exclusively data-driven models are also used in VLE prediction although this method too possesses drawbacks such as a trial and error approach in specifying the data-fitting function. For overcoming these difficulties, this paper employs a machine learning (ML) formalism namely “genetic programming (GP)” possessing certain attractive features for the VLE prediction. Specifically, three case studies have been performed wherein GP-based models have been developed using experimental data, for predicting the vapor phase composition of a ternary, and a group of non–ideal binary systems. The inputs to models consists of three pure component attributes (acentric factor, critical temperature, and critical pressure), and as many intensive thermodynamic parameters (liquid phase composition, pressure, and temperature). A comparison of the VLE prediction and generalization performance of the GP-based models with the corresponding standard thermodynamic models reveals that the former class of models possess either superior or closely comparable performance vis-a-vis thermodynamic models. Noteworthy features of this study are: (i) a single GP-based model can predict VLE of a group of binary systems, and (ii) applicability of a GP-based model trained on an alcohol-acetate series data for its higher homolog. The VLE modeling approach exemplified here can be gainfully extended to other ternary and non-ideal binary systems, and for designing corresponding experiments in different pressure and temperature ranges." @default.
- W2773789527 created "2017-12-22" @default.
- W2773789527 creator A5018288827 @default.
- W2773789527 creator A5063771906 @default.
- W2773789527 date "2018-03-01" @default.
- W2773789527 modified "2023-10-10" @default.
- W2773789527 title "Genetic programming based models for prediction of vapor-liquid equilibrium" @default.
- W2773789527 cites W1045499741 @default.
- W2773789527 cites W114419744 @default.
- W2773789527 cites W1908724451 @default.
- W2773789527 cites W1965229818 @default.
- W2773789527 cites W1971721583 @default.
- W2773789527 cites W1976421928 @default.
- W2773789527 cites W1992623294 @default.
- W2773789527 cites W1996250823 @default.
- W2773789527 cites W2005910483 @default.
- W2773789527 cites W2007543143 @default.
- W2773789527 cites W2009367142 @default.
- W2773789527 cites W2015999545 @default.
- W2773789527 cites W2016347476 @default.
- W2773789527 cites W2018249220 @default.
- W2773789527 cites W2030524365 @default.
- W2773789527 cites W2034643505 @default.
- W2773789527 cites W2035423586 @default.
- W2773789527 cites W2036274607 @default.
- W2773789527 cites W2036348225 @default.
- W2773789527 cites W2047375263 @default.
- W2773789527 cites W2072782187 @default.
- W2773789527 cites W2073833213 @default.
- W2773789527 cites W2074244069 @default.
- W2773789527 cites W2083184115 @default.
- W2773789527 cites W2087070363 @default.
- W2773789527 cites W2087163163 @default.
- W2773789527 cites W2093938684 @default.
- W2773789527 cites W2094356988 @default.
- W2773789527 cites W2094818470 @default.
- W2773789527 cites W2102686714 @default.
- W2773789527 cites W2129288307 @default.
- W2773789527 cites W2144149200 @default.
- W2773789527 cites W2144417044 @default.
- W2773789527 cites W2159793693 @default.
- W2773789527 cites W2298504087 @default.
- W2773789527 cites W2308546507 @default.
- W2773789527 cites W2331629118 @default.
- W2773789527 cites W2521125114 @default.
- W2773789527 cites W2560768239 @default.
- W2773789527 cites W2989012067 @default.
- W2773789527 doi "https://doi.org/10.1016/j.calphad.2017.11.002" @default.
- W2773789527 hasPublicationYear "2018" @default.
- W2773789527 type Work @default.
- W2773789527 sameAs 2773789527 @default.
- W2773789527 citedByCount "8" @default.
- W2773789527 countsByYear W27737895272019 @default.
- W2773789527 countsByYear W27737895272020 @default.
- W2773789527 countsByYear W27737895272023 @default.
- W2773789527 crossrefType "journal-article" @default.
- W2773789527 hasAuthorship W2773789527A5018288827 @default.
- W2773789527 hasAuthorship W2773789527A5063771906 @default.
- W2773789527 hasConcept C110332635 @default.
- W2773789527 hasConcept C119857082 @default.
- W2773789527 hasConcept C121332964 @default.
- W2773789527 hasConcept C134306372 @default.
- W2773789527 hasConcept C163115403 @default.
- W2773789527 hasConcept C168167062 @default.
- W2773789527 hasConcept C177148314 @default.
- W2773789527 hasConcept C178790620 @default.
- W2773789527 hasConcept C185592680 @default.
- W2773789527 hasConcept C187434265 @default.
- W2773789527 hasConcept C199360897 @default.
- W2773789527 hasConcept C2986159531 @default.
- W2773789527 hasConcept C33038907 @default.
- W2773789527 hasConcept C33923547 @default.
- W2773789527 hasConcept C41008148 @default.
- W2773789527 hasConcept C44280652 @default.
- W2773789527 hasConcept C48372109 @default.
- W2773789527 hasConcept C64452783 @default.
- W2773789527 hasConcept C89591040 @default.
- W2773789527 hasConcept C94375191 @default.
- W2773789527 hasConcept C97355855 @default.
- W2773789527 hasConceptScore W2773789527C110332635 @default.
- W2773789527 hasConceptScore W2773789527C119857082 @default.
- W2773789527 hasConceptScore W2773789527C121332964 @default.
- W2773789527 hasConceptScore W2773789527C134306372 @default.
- W2773789527 hasConceptScore W2773789527C163115403 @default.
- W2773789527 hasConceptScore W2773789527C168167062 @default.
- W2773789527 hasConceptScore W2773789527C177148314 @default.
- W2773789527 hasConceptScore W2773789527C178790620 @default.
- W2773789527 hasConceptScore W2773789527C185592680 @default.
- W2773789527 hasConceptScore W2773789527C187434265 @default.
- W2773789527 hasConceptScore W2773789527C199360897 @default.
- W2773789527 hasConceptScore W2773789527C2986159531 @default.
- W2773789527 hasConceptScore W2773789527C33038907 @default.
- W2773789527 hasConceptScore W2773789527C33923547 @default.
- W2773789527 hasConceptScore W2773789527C41008148 @default.
- W2773789527 hasConceptScore W2773789527C44280652 @default.
- W2773789527 hasConceptScore W2773789527C48372109 @default.
- W2773789527 hasConceptScore W2773789527C64452783 @default.
- W2773789527 hasConceptScore W2773789527C89591040 @default.