Matches in SemOpenAlex for { <https://semopenalex.org/work/W2774093485> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2774093485 endingPage "1190" @default.
- W2774093485 startingPage "1179" @default.
- W2774093485 abstract "To efficiently model high-order nonlinear material mixtures in complex scenery, more and more complex spectral mixing models have been developed, so that over-fitting phenomena more often occur during the unmixing process. Therefore, the accurate and robust inversion of material abundances is a challenging task, especially for low signal-to-noise ratio (SNR) data. In this paper, this task is achieved by inverting the parameters using a hierarchical Bayesian model based on the P-linear mixing model (PLMM). Moreover, spatial information is integrated in the inversion process by considering that similar pixels share the same prior information. Thanks to the fact that PLMM can be translated into a linear model using endmembers and their powers, unmixing is performed by solving a convex optimization problem. Results obtained from synthetic and real data show that the proposed algorithm improves the accuracy of abundance estimation and efficiently reduces over-fitting effects in low SNR data." @default.
- W2774093485 created "2017-12-22" @default.
- W2774093485 creator A5003113965 @default.
- W2774093485 creator A5006623289 @default.
- W2774093485 creator A5045473616 @default.
- W2774093485 creator A5066378186 @default.
- W2774093485 creator A5083495404 @default.
- W2774093485 date "2018-04-01" @default.
- W2774093485 modified "2023-10-14" @default.
- W2774093485 title "Integrating Spatial Information in the Normalized P-Linear Algorithm for Nonlinear Hyperspectral Unmixing" @default.
- W2774093485 cites W1572910457 @default.
- W2774093485 cites W1856317893 @default.
- W2774093485 cites W1957094454 @default.
- W2774093485 cites W1963659868 @default.
- W2774093485 cites W1964570608 @default.
- W2774093485 cites W2002086429 @default.
- W2774093485 cites W2003896345 @default.
- W2774093485 cites W2008924446 @default.
- W2774093485 cites W2011315899 @default.
- W2774093485 cites W2019274094 @default.
- W2774093485 cites W2023791222 @default.
- W2774093485 cites W2042626896 @default.
- W2774093485 cites W2051358843 @default.
- W2774093485 cites W2060629443 @default.
- W2774093485 cites W2063790512 @default.
- W2774093485 cites W2070424424 @default.
- W2774093485 cites W2078222544 @default.
- W2774093485 cites W2088259770 @default.
- W2774093485 cites W2114819256 @default.
- W2774093485 cites W2118246710 @default.
- W2774093485 cites W2136134691 @default.
- W2774093485 cites W2139766511 @default.
- W2774093485 cites W2157321686 @default.
- W2774093485 cites W2161372002 @default.
- W2774093485 cites W2163886442 @default.
- W2774093485 cites W2340085246 @default.
- W2774093485 cites W2344116562 @default.
- W2774093485 cites W2541576858 @default.
- W2774093485 cites W2547826358 @default.
- W2774093485 cites W2766051188 @default.
- W2774093485 cites W3122463936 @default.
- W2774093485 cites W4233760599 @default.
- W2774093485 cites W4250589301 @default.
- W2774093485 doi "https://doi.org/10.1109/jstars.2017.2771482" @default.
- W2774093485 hasPublicationYear "2018" @default.
- W2774093485 type Work @default.
- W2774093485 sameAs 2774093485 @default.
- W2774093485 citedByCount "23" @default.
- W2774093485 countsByYear W27740934852019 @default.
- W2774093485 countsByYear W27740934852020 @default.
- W2774093485 countsByYear W27740934852021 @default.
- W2774093485 countsByYear W27740934852022 @default.
- W2774093485 countsByYear W27740934852023 @default.
- W2774093485 crossrefType "journal-article" @default.
- W2774093485 hasAuthorship W2774093485A5003113965 @default.
- W2774093485 hasAuthorship W2774093485A5006623289 @default.
- W2774093485 hasAuthorship W2774093485A5045473616 @default.
- W2774093485 hasAuthorship W2774093485A5066378186 @default.
- W2774093485 hasAuthorship W2774093485A5083495404 @default.
- W2774093485 hasConcept C11413529 @default.
- W2774093485 hasConcept C121332964 @default.
- W2774093485 hasConcept C153180895 @default.
- W2774093485 hasConcept C154945302 @default.
- W2774093485 hasConcept C158622935 @default.
- W2774093485 hasConcept C159078339 @default.
- W2774093485 hasConcept C41008148 @default.
- W2774093485 hasConcept C62520636 @default.
- W2774093485 hasConceptScore W2774093485C11413529 @default.
- W2774093485 hasConceptScore W2774093485C121332964 @default.
- W2774093485 hasConceptScore W2774093485C153180895 @default.
- W2774093485 hasConceptScore W2774093485C154945302 @default.
- W2774093485 hasConceptScore W2774093485C158622935 @default.
- W2774093485 hasConceptScore W2774093485C159078339 @default.
- W2774093485 hasConceptScore W2774093485C41008148 @default.
- W2774093485 hasConceptScore W2774093485C62520636 @default.
- W2774093485 hasFunder F4320321001 @default.
- W2774093485 hasIssue "4" @default.
- W2774093485 hasLocation W27740934851 @default.
- W2774093485 hasOpenAccess W2774093485 @default.
- W2774093485 hasPrimaryLocation W27740934851 @default.
- W2774093485 hasRelatedWork W1491778359 @default.
- W2774093485 hasRelatedWork W1869808405 @default.
- W2774093485 hasRelatedWork W2028628118 @default.
- W2774093485 hasRelatedWork W2031007444 @default.
- W2774093485 hasRelatedWork W2775464024 @default.
- W2774093485 hasRelatedWork W2783789044 @default.
- W2774093485 hasRelatedWork W2972973180 @default.
- W2774093485 hasRelatedWork W3211035526 @default.
- W2774093485 hasRelatedWork W4291701050 @default.
- W2774093485 hasRelatedWork W4293272463 @default.
- W2774093485 hasVolume "11" @default.
- W2774093485 isParatext "false" @default.
- W2774093485 isRetracted "false" @default.
- W2774093485 magId "2774093485" @default.
- W2774093485 workType "article" @default.