Matches in SemOpenAlex for { <https://semopenalex.org/work/W2774163382> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2774163382 abstract "The objective of the work is to denoise the image and to provide better Peak Signal to Noise Ratio (PSNR) with edge preservation by using the hidden Bayesian network constructed from the wavelet coefficients. A Bayesian network which is also called as a directed acyclic graph is a graphical model with a set of conditional probabilities. Each node in the graph represents a random variable which is used to denote an attribute, feature and hypothesis. Bayesian network is constructed to model the priori probability of the original image for the image denoising problem, which involves removing white and homogeneous Gaussian noise with zero mean and known variance from an image. Two Maximum A Posteriori (MAP) techniques are used such as Bivariate Cauchy MAP (BCMAP) and Multivariate Cauchy MAP (MCMAP). From the simulation analysis, it is very clear that for various noise levels, the wavelet Bayesian network based on MAP estimation provides better PSNR value by preserving edges compared with the existing methods. For Lena image with noise variance of 15, the percentage increase in PSNR values are 2.08%, 4.16% and 7.38% for wavelet Bayesian, BCMAP and MCMAP compared with Bayesian Least Square Gaussian Scale Mixture (BLS-GSM) and for the same, the percentage increase in PSNR are 0.12%, 2.15% and 5.32% compared with Block Matching and 3-D filtering (BM3D)." @default.
- W2774163382 created "2017-12-22" @default.
- W2774163382 creator A5006350817 @default.
- W2774163382 creator A5046025973 @default.
- W2774163382 date "2017-12-01" @default.
- W2774163382 modified "2023-09-24" @default.
- W2774163382 title "Image Denoising by Wavelet Bayesian Network based on MAP Estimation" @default.
- W2774163382 cites W1997147589 @default.
- W2774163382 cites W1998419211 @default.
- W2774163382 cites W2008906462 @default.
- W2774163382 cites W2016709607 @default.
- W2774163382 cites W2040675601 @default.
- W2774163382 cites W2056370875 @default.
- W2774163382 cites W2062127501 @default.
- W2774163382 cites W2086298205 @default.
- W2774163382 cites W2103909010 @default.
- W2774163382 cites W2108382860 @default.
- W2774163382 cites W2113945798 @default.
- W2774163382 cites W2134929491 @default.
- W2774163382 cites W2158162781 @default.
- W2774163382 cites W2170112109 @default.
- W2774163382 cites W2180372284 @default.
- W2774163382 cites W2536599074 @default.
- W2774163382 cites W2546664592 @default.
- W2774163382 hasPublicationYear "2017" @default.
- W2774163382 type Work @default.
- W2774163382 sameAs 2774163382 @default.
- W2774163382 citedByCount "1" @default.
- W2774163382 countsByYear W27741633822021 @default.
- W2774163382 crossrefType "journal-article" @default.
- W2774163382 hasAuthorship W2774163382A5006350817 @default.
- W2774163382 hasAuthorship W2774163382A5046025973 @default.
- W2774163382 hasConcept C105795698 @default.
- W2774163382 hasConcept C11413529 @default.
- W2774163382 hasConcept C153180895 @default.
- W2774163382 hasConcept C154945302 @default.
- W2774163382 hasConcept C33923547 @default.
- W2774163382 hasConcept C41008148 @default.
- W2774163382 hasConcept C47432892 @default.
- W2774163382 hasConcept C49781872 @default.
- W2774163382 hasConcept C9810830 @default.
- W2774163382 hasConceptScore W2774163382C105795698 @default.
- W2774163382 hasConceptScore W2774163382C11413529 @default.
- W2774163382 hasConceptScore W2774163382C153180895 @default.
- W2774163382 hasConceptScore W2774163382C154945302 @default.
- W2774163382 hasConceptScore W2774163382C33923547 @default.
- W2774163382 hasConceptScore W2774163382C41008148 @default.
- W2774163382 hasConceptScore W2774163382C47432892 @default.
- W2774163382 hasConceptScore W2774163382C49781872 @default.
- W2774163382 hasConceptScore W2774163382C9810830 @default.
- W2774163382 hasLocation W27741633821 @default.
- W2774163382 hasOpenAccess W2774163382 @default.
- W2774163382 hasPrimaryLocation W27741633821 @default.
- W2774163382 hasRelatedWork W1525509625 @default.
- W2774163382 hasRelatedWork W1973406425 @default.
- W2774163382 hasRelatedWork W2007904018 @default.
- W2774163382 hasRelatedWork W2048764473 @default.
- W2774163382 hasRelatedWork W2065391104 @default.
- W2774163382 hasRelatedWork W2085626973 @default.
- W2774163382 hasRelatedWork W2103909010 @default.
- W2774163382 hasRelatedWork W2116882018 @default.
- W2774163382 hasRelatedWork W2140926432 @default.
- W2774163382 hasRelatedWork W2171770180 @default.
- W2774163382 hasRelatedWork W2242926188 @default.
- W2774163382 hasRelatedWork W2245655831 @default.
- W2774163382 hasRelatedWork W2352352334 @default.
- W2774163382 hasRelatedWork W2354598381 @default.
- W2774163382 hasRelatedWork W2358640476 @default.
- W2774163382 hasRelatedWork W2359155791 @default.
- W2774163382 hasRelatedWork W2382611341 @default.
- W2774163382 hasRelatedWork W2392652452 @default.
- W2774163382 hasRelatedWork W2810288025 @default.
- W2774163382 hasRelatedWork W2153223735 @default.
- W2774163382 hasVolume "02" @default.
- W2774163382 isParatext "false" @default.
- W2774163382 isRetracted "false" @default.
- W2774163382 magId "2774163382" @default.
- W2774163382 workType "article" @default.