Matches in SemOpenAlex for { <https://semopenalex.org/work/W2774267923> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2774267923 endingPage "88" @default.
- W2774267923 startingPage "78" @default.
- W2774267923 abstract "Abstract Approaches to space-related problems that model decision-making and interactions at the level of individuals, and thus require disaggregated population data (i.e. specifying all attributes for each individual) are increasingly being used in various research domains. Actual population data is generally unavailable due to confidentiality and cost constraints. Therefore, synthetic population generation techniques based on aggregated marginal constraints and a random sample are often used. The two sample-based techniques most frequently used are Iterative Proportional Fitting (IPF) coupled with integerization and Simulated Annealing (SA) (SA is a special case of Combinatorial Optimization, CO). Several authors have emphasized the need for further research on comparing their relative performance. Thus, a methodology encompassing statistical analysis to compare IPF and SA is presented here. Technique performance is evaluated through the percentage classification error of the generated population against the reference population. Two cases are analyzed using the 2001 census microdata in Andalusia (Spain) and the 2000 Swiss Public Use Sample as reference populations, encompassing 6 socio-demographic attributes plus geographic location (municipalities and cantons). Aggregated marginal constraints and random samples are calculated from the reference population. A set of synthetic small area populations are generated using both techniques for various scenarios within each case, corresponding to different combinations of sample sizes, number of categories and number of generated populations. Results reveal the great importance of the integerization process applied to IPF's output. IPF coupled with a marginal distributions-controlled rounding outperforms populations generated with SA in all scenarios, while as SA generally outperforms IPF coupled with the commonly used Monte Carlo rounding." @default.
- W2774267923 created "2017-12-22" @default.
- W2774267923 creator A5030041995 @default.
- W2774267923 creator A5036204493 @default.
- W2774267923 creator A5073263732 @default.
- W2774267923 date "2018-03-01" @default.
- W2774267923 modified "2023-10-16" @default.
- W2774267923 title "Comparison of Iterative Proportional Fitting and Simulated Annealing as synthetic population generation techniques: Importance of the rounding method" @default.
- W2774267923 cites W1537025923 @default.
- W2774267923 cites W1966565827 @default.
- W2774267923 cites W1972417559 @default.
- W2774267923 cites W1977945833 @default.
- W2774267923 cites W1978179853 @default.
- W2774267923 cites W1986776531 @default.
- W2774267923 cites W1993922396 @default.
- W2774267923 cites W1995973328 @default.
- W2774267923 cites W2017326332 @default.
- W2774267923 cites W2030652107 @default.
- W2774267923 cites W2052870840 @default.
- W2774267923 cites W2061408624 @default.
- W2774267923 cites W2064821617 @default.
- W2774267923 cites W2077860232 @default.
- W2774267923 cites W2079196704 @default.
- W2774267923 cites W2088123518 @default.
- W2774267923 cites W2088593023 @default.
- W2774267923 cites W2101465850 @default.
- W2774267923 cites W2106232538 @default.
- W2774267923 cites W2107521066 @default.
- W2774267923 cites W2110555120 @default.
- W2774267923 cites W2112294099 @default.
- W2774267923 cites W2116358665 @default.
- W2774267923 cites W2121097743 @default.
- W2774267923 cites W2126980388 @default.
- W2774267923 cites W2130690138 @default.
- W2774267923 cites W2136160400 @default.
- W2774267923 cites W2140982038 @default.
- W2774267923 cites W2151233483 @default.
- W2774267923 cites W2151484786 @default.
- W2774267923 cites W2152180600 @default.
- W2774267923 cites W2166386638 @default.
- W2774267923 cites W2206148784 @default.
- W2774267923 cites W2257016855 @default.
- W2774267923 cites W2305966829 @default.
- W2774267923 cites W272855514 @default.
- W2774267923 cites W3098252512 @default.
- W2774267923 doi "https://doi.org/10.1016/j.compenvurbsys.2017.11.001" @default.
- W2774267923 hasPublicationYear "2018" @default.
- W2774267923 type Work @default.
- W2774267923 sameAs 2774267923 @default.
- W2774267923 citedByCount "5" @default.
- W2774267923 countsByYear W27742679232021 @default.
- W2774267923 countsByYear W27742679232022 @default.
- W2774267923 crossrefType "journal-article" @default.
- W2774267923 hasAuthorship W2774267923A5030041995 @default.
- W2774267923 hasAuthorship W2774267923A5036204493 @default.
- W2774267923 hasAuthorship W2774267923A5073263732 @default.
- W2774267923 hasConcept C111919701 @default.
- W2774267923 hasConcept C11413529 @default.
- W2774267923 hasConcept C126255220 @default.
- W2774267923 hasConcept C126980161 @default.
- W2774267923 hasConcept C136625980 @default.
- W2774267923 hasConcept C159694833 @default.
- W2774267923 hasConcept C28826006 @default.
- W2774267923 hasConcept C2908647359 @default.
- W2774267923 hasConcept C33923547 @default.
- W2774267923 hasConcept C41008148 @default.
- W2774267923 hasConcept C71924100 @default.
- W2774267923 hasConcept C99454951 @default.
- W2774267923 hasConceptScore W2774267923C111919701 @default.
- W2774267923 hasConceptScore W2774267923C11413529 @default.
- W2774267923 hasConceptScore W2774267923C126255220 @default.
- W2774267923 hasConceptScore W2774267923C126980161 @default.
- W2774267923 hasConceptScore W2774267923C136625980 @default.
- W2774267923 hasConceptScore W2774267923C159694833 @default.
- W2774267923 hasConceptScore W2774267923C28826006 @default.
- W2774267923 hasConceptScore W2774267923C2908647359 @default.
- W2774267923 hasConceptScore W2774267923C33923547 @default.
- W2774267923 hasConceptScore W2774267923C41008148 @default.
- W2774267923 hasConceptScore W2774267923C71924100 @default.
- W2774267923 hasConceptScore W2774267923C99454951 @default.
- W2774267923 hasLocation W27742679231 @default.
- W2774267923 hasOpenAccess W2774267923 @default.
- W2774267923 hasPrimaryLocation W27742679231 @default.
- W2774267923 hasRelatedWork W173119192 @default.
- W2774267923 hasRelatedWork W2022023129 @default.
- W2774267923 hasRelatedWork W2088826732 @default.
- W2774267923 hasRelatedWork W2103773815 @default.
- W2774267923 hasRelatedWork W2109757696 @default.
- W2774267923 hasRelatedWork W2168138201 @default.
- W2774267923 hasRelatedWork W2315263307 @default.
- W2774267923 hasRelatedWork W2354960838 @default.
- W2774267923 hasRelatedWork W2951602109 @default.
- W2774267923 hasRelatedWork W3177032022 @default.
- W2774267923 hasVolume "68" @default.
- W2774267923 isParatext "false" @default.
- W2774267923 isRetracted "false" @default.
- W2774267923 magId "2774267923" @default.
- W2774267923 workType "article" @default.