Matches in SemOpenAlex for { <https://semopenalex.org/work/W2774317241> ?p ?o ?g. }
- W2774317241 endingPage "204" @default.
- W2774317241 startingPage "199" @default.
- W2774317241 abstract "Semantic gap is an important challenging problem in content-based image retrieval (CBIR) up to now. Bag-of-words (BOW) framework is a popular approach that tries to reduce the semantic gap in CBIR. In this paper, an approach integrating visual saliency model with BOW is proposed for semantic image retrieval. Images are firstly segmented into background regions and foreground objects by a visual saliency-based segmentation method. And then multi-features including Scale Invariant Feature Transform (SIFT) features packed in BOW are extracted from regions and objects respectively and fused considering different characteristics of background regions and foreground objects. Finally, a fusion of z-score normalized Chi-Square distance is adopted as the similarity measurement. This proposal has been implemented on two widely used benchmark databases and the results evaluated in terms of mean Average Precision (mAP) show that our proposal outperforms the referred state-of-the-art approaches." @default.
- W2774317241 created "2017-12-22" @default.
- W2774317241 creator A5027546820 @default.
- W2774317241 creator A5029409871 @default.
- W2774317241 creator A5034394457 @default.
- W2774317241 creator A5038889478 @default.
- W2774317241 creator A5082878554 @default.
- W2774317241 date "2018-01-01" @default.
- W2774317241 modified "2023-10-12" @default.
- W2774317241 title "Saliency-based multi-feature modeling for semantic image retrieval" @default.
- W2774317241 cites W1968555645 @default.
- W2774317241 cites W1969198793 @default.
- W2774317241 cites W1983433757 @default.
- W2774317241 cites W1999478155 @default.
- W2774317241 cites W2001773889 @default.
- W2774317241 cites W2010262905 @default.
- W2774317241 cites W2013808584 @default.
- W2774317241 cites W2024082504 @default.
- W2774317241 cites W2035517574 @default.
- W2774317241 cites W2049538695 @default.
- W2774317241 cites W2051090063 @default.
- W2774317241 cites W2051730763 @default.
- W2774317241 cites W2082453965 @default.
- W2774317241 cites W2095609079 @default.
- W2774317241 cites W2099482512 @default.
- W2774317241 cites W2111993661 @default.
- W2774317241 cites W2123432324 @default.
- W2774317241 cites W2124351162 @default.
- W2774317241 cites W2128017662 @default.
- W2774317241 cites W2131846894 @default.
- W2774317241 cites W2151103935 @default.
- W2774317241 cites W2163352848 @default.
- W2774317241 cites W2200631819 @default.
- W2774317241 cites W2287451110 @default.
- W2774317241 cites W2913932916 @default.
- W2774317241 cites W4239147634 @default.
- W2774317241 cites W968110725 @default.
- W2774317241 doi "https://doi.org/10.1016/j.jvcir.2017.11.021" @default.
- W2774317241 hasPublicationYear "2018" @default.
- W2774317241 type Work @default.
- W2774317241 sameAs 2774317241 @default.
- W2774317241 citedByCount "46" @default.
- W2774317241 countsByYear W27743172412018 @default.
- W2774317241 countsByYear W27743172412019 @default.
- W2774317241 countsByYear W27743172412020 @default.
- W2774317241 countsByYear W27743172412021 @default.
- W2774317241 countsByYear W27743172412022 @default.
- W2774317241 countsByYear W27743172412023 @default.
- W2774317241 crossrefType "journal-article" @default.
- W2774317241 hasAuthorship W2774317241A5027546820 @default.
- W2774317241 hasAuthorship W2774317241A5029409871 @default.
- W2774317241 hasAuthorship W2774317241A5034394457 @default.
- W2774317241 hasAuthorship W2774317241A5038889478 @default.
- W2774317241 hasAuthorship W2774317241A5082878554 @default.
- W2774317241 hasConcept C103278499 @default.
- W2774317241 hasConcept C115961682 @default.
- W2774317241 hasConcept C13280743 @default.
- W2774317241 hasConcept C13672336 @default.
- W2774317241 hasConcept C138885662 @default.
- W2774317241 hasConcept C153180895 @default.
- W2774317241 hasConcept C154945302 @default.
- W2774317241 hasConcept C1667742 @default.
- W2774317241 hasConcept C167611913 @default.
- W2774317241 hasConcept C185798385 @default.
- W2774317241 hasConcept C189391414 @default.
- W2774317241 hasConcept C205649164 @default.
- W2774317241 hasConcept C2776401178 @default.
- W2774317241 hasConcept C2780052074 @default.
- W2774317241 hasConcept C2781122975 @default.
- W2774317241 hasConcept C31972630 @default.
- W2774317241 hasConcept C41008148 @default.
- W2774317241 hasConcept C41895202 @default.
- W2774317241 hasConcept C61265191 @default.
- W2774317241 hasConcept C86034646 @default.
- W2774317241 hasConcept C89600930 @default.
- W2774317241 hasConceptScore W2774317241C103278499 @default.
- W2774317241 hasConceptScore W2774317241C115961682 @default.
- W2774317241 hasConceptScore W2774317241C13280743 @default.
- W2774317241 hasConceptScore W2774317241C13672336 @default.
- W2774317241 hasConceptScore W2774317241C138885662 @default.
- W2774317241 hasConceptScore W2774317241C153180895 @default.
- W2774317241 hasConceptScore W2774317241C154945302 @default.
- W2774317241 hasConceptScore W2774317241C1667742 @default.
- W2774317241 hasConceptScore W2774317241C167611913 @default.
- W2774317241 hasConceptScore W2774317241C185798385 @default.
- W2774317241 hasConceptScore W2774317241C189391414 @default.
- W2774317241 hasConceptScore W2774317241C205649164 @default.
- W2774317241 hasConceptScore W2774317241C2776401178 @default.
- W2774317241 hasConceptScore W2774317241C2780052074 @default.
- W2774317241 hasConceptScore W2774317241C2781122975 @default.
- W2774317241 hasConceptScore W2774317241C31972630 @default.
- W2774317241 hasConceptScore W2774317241C41008148 @default.
- W2774317241 hasConceptScore W2774317241C41895202 @default.
- W2774317241 hasConceptScore W2774317241C61265191 @default.
- W2774317241 hasConceptScore W2774317241C86034646 @default.
- W2774317241 hasConceptScore W2774317241C89600930 @default.
- W2774317241 hasLocation W27743172411 @default.
- W2774317241 hasLocation W27743172412 @default.