Matches in SemOpenAlex for { <https://semopenalex.org/work/W2774692246> ?p ?o ?g. }
- W2774692246 abstract "In this work, we tackle the problem of instance segmentation, the task of simultaneously solving object detection and semantic segmentation. Towards this goal, we present a model, called MaskLab, which produces three outputs: box detection, semantic segmentation, and direction prediction. Building on top of the Faster-RCNN object detector, the predicted boxes provide accurate localization of object instances. Within each region of interest, MaskLab performs foreground/background segmentation by combining semantic and direction prediction. Semantic segmentation assists the model in distinguishing between objects of different semantic classes including background, while the direction prediction, estimating each pixel's direction towards its corresponding center, allows separating instances of the same semantic class. Moreover, we explore the effect of incorporating recent successful methods from both segmentation and detection (i.e. atrous convolution and hypercolumn). Our proposed model is evaluated on the COCO instance segmentation benchmark and shows comparable performance with other state-of-art models." @default.
- W2774692246 created "2017-12-22" @default.
- W2774692246 creator A5030402556 @default.
- W2774692246 creator A5034294456 @default.
- W2774692246 creator A5048629871 @default.
- W2774692246 creator A5049078993 @default.
- W2774692246 creator A5071563379 @default.
- W2774692246 creator A5090034335 @default.
- W2774692246 date "2017-12-13" @default.
- W2774692246 modified "2023-10-16" @default.
- W2774692246 title "MaskLab: Instance Segmentation by Refining Object Detection with Semantic and Direction Features" @default.
- W2774692246 cites W1529410181 @default.
- W2774692246 cites W1594098193 @default.
- W2774692246 cites W1610060839 @default.
- W2774692246 cites W1821462560 @default.
- W2774692246 cites W1861492603 @default.
- W2774692246 cites W1903029394 @default.
- W2774692246 cites W1905829557 @default.
- W2774692246 cites W1923115158 @default.
- W2774692246 cites W1927486677 @default.
- W2774692246 cites W1932624639 @default.
- W2774692246 cites W1949049686 @default.
- W2774692246 cites W1991367009 @default.
- W2774692246 cites W2046382188 @default.
- W2774692246 cites W2068730032 @default.
- W2774692246 cites W2102605133 @default.
- W2774692246 cites W2111077768 @default.
- W2774692246 cites W2112796928 @default.
- W2774692246 cites W2161236525 @default.
- W2774692246 cites W2216125271 @default.
- W2774692246 cites W2223259665 @default.
- W2774692246 cites W2271840356 @default.
- W2774692246 cites W2274287116 @default.
- W2774692246 cites W2339890635 @default.
- W2774692246 cites W2406270520 @default.
- W2774692246 cites W2407521645 @default.
- W2774692246 cites W2473415337 @default.
- W2774692246 cites W2549139847 @default.
- W2774692246 cites W2552414813 @default.
- W2774692246 cites W2555182955 @default.
- W2774692246 cites W2555751471 @default.
- W2774692246 cites W2557310260 @default.
- W2774692246 cites W2557728737 @default.
- W2774692246 cites W2557889580 @default.
- W2774692246 cites W2558156561 @default.
- W2774692246 cites W2560023338 @default.
- W2774692246 cites W2565639579 @default.
- W2774692246 cites W2572745118 @default.
- W2774692246 cites W2599765304 @default.
- W2774692246 cites W2605161420 @default.
- W2774692246 cites W2605482930 @default.
- W2774692246 cites W2607008612 @default.
- W2774692246 cites W2608858501 @default.
- W2774692246 cites W2630837129 @default.
- W2774692246 cites W2734663976 @default.
- W2774692246 cites W2744404335 @default.
- W2774692246 cites W2777357193 @default.
- W2774692246 cites W2777737607 @default.
- W2774692246 cites W2777795072 @default.
- W2774692246 cites W2949650786 @default.
- W2774692246 cites W2950477723 @default.
- W2774692246 cites W2950510876 @default.
- W2774692246 cites W2951120635 @default.
- W2774692246 cites W2951341166 @default.
- W2774692246 cites W2951548327 @default.
- W2774692246 cites W2951583185 @default.
- W2774692246 cites W2951813836 @default.
- W2774692246 cites W2952147788 @default.
- W2774692246 cites W2952178720 @default.
- W2774692246 cites W2952865063 @default.
- W2774692246 cites W2953106684 @default.
- W2774692246 cites W2953203558 @default.
- W2774692246 cites W2962676885 @default.
- W2774692246 cites W2962891704 @default.
- W2774692246 cites W2963542991 @default.
- W2774692246 cites W2963659353 @default.
- W2774692246 cites W2963971305 @default.
- W2774692246 cites W2964211168 @default.
- W2774692246 cites W2964288706 @default.
- W2774692246 cites W3106250896 @default.
- W2774692246 doi "https://doi.org/10.48550/arxiv.1712.04837" @default.
- W2774692246 hasPublicationYear "2017" @default.
- W2774692246 type Work @default.
- W2774692246 sameAs 2774692246 @default.
- W2774692246 citedByCount "10" @default.
- W2774692246 countsByYear W27746922462018 @default.
- W2774692246 countsByYear W27746922462019 @default.
- W2774692246 countsByYear W27746922462020 @default.
- W2774692246 crossrefType "posted-content" @default.
- W2774692246 hasAuthorship W2774692246A5030402556 @default.
- W2774692246 hasAuthorship W2774692246A5034294456 @default.
- W2774692246 hasAuthorship W2774692246A5048629871 @default.
- W2774692246 hasAuthorship W2774692246A5049078993 @default.
- W2774692246 hasAuthorship W2774692246A5071563379 @default.
- W2774692246 hasAuthorship W2774692246A5090034335 @default.
- W2774692246 hasBestOaLocation W27746922461 @default.
- W2774692246 hasConcept C124504099 @default.
- W2774692246 hasConcept C153180895 @default.
- W2774692246 hasConcept C154945302 @default.
- W2774692246 hasConcept C160633673 @default.