Matches in SemOpenAlex for { <https://semopenalex.org/work/W2774914265> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2774914265 abstract "The kernel mean embedding is known to provide a data representation which preserves full information of the data distribution. While typically computationally costly, its nonparametric nature has an advantage of requiring no explicit model specification of the data. At the other extreme are approaches which summarize data distributions into a finite-dimensional vector of hand-picked summary statistics. This explicit finite-dimensional representation offers a computationally cheaper alternative. Clearly, there is a trade-off between cost and sufficiency of the representation, and it is of interest to have a computationally efficient technique which can produce a data-driven representation, thus combining the advantages from both extremes. The main focus of this thesis is on the development of linear-time mean-embedding-based methods to automatically extract informative features of data distributions, for statistical tests and Bayesian inference. In the first part on statistical tests, several new linear-time techniques are developed. These include a new kernel-based distance measure for distributions, a new linear-time nonparametric dependence measure, and a linear-time discrepancy measure between a probabilistic model and a sample, based on a Stein operator. These new measures give rise to linear-time and consistent tests of homogeneity, independence, and goodness of fit, respectively. The key idea behind these new tests is to explicitly learn distribution-characterizing feature vectors, by maximizing a proxy for the probability of correctly rejecting the null hypothesis. We theoretically show that these new tests are consistent for any finite number of features. In the second part, we explore the use of random Fourier features to construct approximate kernel mean embeddings, for representing messages in expectation propagation (EP) algorithm. The goal is to learn a message operator which predicts EP outgoing messages from incoming messages. We derive a novel two-layer random feature representation of the input messages, allowing online learning of the operator during EP inference." @default.
- W2774914265 created "2017-12-22" @default.
- W2774914265 creator A5072755496 @default.
- W2774914265 date "2017-11-28" @default.
- W2774914265 modified "2023-09-28" @default.
- W2774914265 title "Kernel-based distribution features for statistical tests and Bayesian inference" @default.
- W2774914265 hasPublicationYear "2017" @default.
- W2774914265 type Work @default.
- W2774914265 sameAs 2774914265 @default.
- W2774914265 citedByCount "1" @default.
- W2774914265 countsByYear W27749142652021 @default.
- W2774914265 crossrefType "dissertation" @default.
- W2774914265 hasAuthorship W2774914265A5072755496 @default.
- W2774914265 hasConcept C102366305 @default.
- W2774914265 hasConcept C105795698 @default.
- W2774914265 hasConcept C11413529 @default.
- W2774914265 hasConcept C122280245 @default.
- W2774914265 hasConcept C12267149 @default.
- W2774914265 hasConcept C134261354 @default.
- W2774914265 hasConcept C154945302 @default.
- W2774914265 hasConcept C33923547 @default.
- W2774914265 hasConcept C41008148 @default.
- W2774914265 hasConcept C87007009 @default.
- W2774914265 hasConceptScore W2774914265C102366305 @default.
- W2774914265 hasConceptScore W2774914265C105795698 @default.
- W2774914265 hasConceptScore W2774914265C11413529 @default.
- W2774914265 hasConceptScore W2774914265C122280245 @default.
- W2774914265 hasConceptScore W2774914265C12267149 @default.
- W2774914265 hasConceptScore W2774914265C134261354 @default.
- W2774914265 hasConceptScore W2774914265C154945302 @default.
- W2774914265 hasConceptScore W2774914265C33923547 @default.
- W2774914265 hasConceptScore W2774914265C41008148 @default.
- W2774914265 hasConceptScore W2774914265C87007009 @default.
- W2774914265 hasLocation W27749142651 @default.
- W2774914265 hasOpenAccess W2774914265 @default.
- W2774914265 hasPrimaryLocation W27749142651 @default.
- W2774914265 hasRelatedWork W1457965568 @default.
- W2774914265 hasRelatedWork W1531921002 @default.
- W2774914265 hasRelatedWork W1689407543 @default.
- W2774914265 hasRelatedWork W2284561687 @default.
- W2774914265 hasRelatedWork W2510641838 @default.
- W2774914265 hasRelatedWork W2527716295 @default.
- W2774914265 hasRelatedWork W2536553067 @default.
- W2774914265 hasRelatedWork W2759160237 @default.
- W2774914265 hasRelatedWork W2908620745 @default.
- W2774914265 hasRelatedWork W2912371996 @default.
- W2774914265 hasRelatedWork W2941256613 @default.
- W2774914265 hasRelatedWork W2951951091 @default.
- W2774914265 hasRelatedWork W2962862582 @default.
- W2774914265 hasRelatedWork W2970677936 @default.
- W2774914265 hasRelatedWork W2985821930 @default.
- W2774914265 hasRelatedWork W3099588916 @default.
- W2774914265 hasRelatedWork W3139399567 @default.
- W2774914265 hasRelatedWork W3173114656 @default.
- W2774914265 hasRelatedWork W3203129694 @default.
- W2774914265 hasRelatedWork W329869691 @default.
- W2774914265 isParatext "false" @default.
- W2774914265 isRetracted "false" @default.
- W2774914265 magId "2774914265" @default.
- W2774914265 workType "dissertation" @default.