Matches in SemOpenAlex for { <https://semopenalex.org/work/W2774974037> ?p ?o ?g. }
- W2774974037 abstract "One goal of toxicity testing, among others, is identifying harmful effects of chemicals. Given the high demand for toxicity tests, it is necessary to conduct these tests for multiple toxicity endpoints for the same compound. Current computational toxicology methods aim at developing models mainly to predict a single toxicity endpoint. When chemicals cause several toxicity effects, one model is generated to predict toxicity for each endpoint, which can be labor and computationally intensive when the number of toxicity endpoints is large. Additionally, this approach does not take into consideration possible correlation between the endpoints. Therefore, there has been a recent shift in computational toxicity studies toward generating predictive models able to predict several toxicity endpoints by utilizing correlations between these endpoints. Applying such correlations jointly with compounds' features may improve model's performance and reduce the number of required models. This can be achieved through multi-label classification methods. These methods have not undergone comprehensive benchmarking in the domain of predictive toxicology. Therefore, we performed extensive benchmarking and analysis of over 19,000 multi-label classification models generated using combinations of the state-of-the-art methods. The methods have been evaluated from different perspectives using various metrics to assess their effectiveness. We were able to illustrate variability in the performance of the methods under several conditions. This review will help researchers to select the most suitable method for the problem at hand and provide a baseline for evaluating new approaches. Based on this analysis, we provided recommendations for potential future directions in this area. This article is categorized under: 1Computer and Information Science > Chemoinformatics2Computer and Information Science > Computer Algorithms and Programming." @default.
- W2774974037 created "2017-12-22" @default.
- W2774974037 creator A5051132364 @default.
- W2774974037 creator A5055569646 @default.
- W2774974037 date "2017-12-04" @default.
- W2774974037 modified "2023-10-09" @default.
- W2774974037 title "<i>In silico</i> toxicology: comprehensive benchmarking of multi‐label classification methods applied to chemical toxicity data" @default.
- W2774974037 cites W1497209257 @default.
- W2774974037 cites W1594978463 @default.
- W2774974037 cites W1753402186 @default.
- W2774974037 cites W1895071597 @default.
- W2774974037 cites W194228989 @default.
- W2774974037 cites W1986159170 @default.
- W2774974037 cites W1993838378 @default.
- W2774974037 cites W1999058844 @default.
- W2774974037 cites W1999954155 @default.
- W2774974037 cites W2000769684 @default.
- W2774974037 cites W2008207702 @default.
- W2774974037 cites W2010184995 @default.
- W2774974037 cites W2011777324 @default.
- W2774974037 cites W2013640190 @default.
- W2774974037 cites W2026700724 @default.
- W2774974037 cites W2039240409 @default.
- W2774974037 cites W2048679005 @default.
- W2774974037 cites W2051669046 @default.
- W2774974037 cites W2056132907 @default.
- W2774974037 cites W2057910058 @default.
- W2774974037 cites W2076225427 @default.
- W2774974037 cites W2077057698 @default.
- W2774974037 cites W2082729696 @default.
- W2774974037 cites W2084087750 @default.
- W2774974037 cites W2087347434 @default.
- W2774974037 cites W2093040750 @default.
- W2774974037 cites W2101251493 @default.
- W2774974037 cites W2107626950 @default.
- W2774974037 cites W2111318961 @default.
- W2774974037 cites W2114315281 @default.
- W2774974037 cites W2122111042 @default.
- W2774974037 cites W2132033637 @default.
- W2774974037 cites W2138290126 @default.
- W2774974037 cites W2139212933 @default.
- W2774974037 cites W2189911347 @default.
- W2774974037 cites W2195098119 @default.
- W2774974037 cites W2225235469 @default.
- W2774974037 cites W2253823912 @default.
- W2774974037 cites W2288366709 @default.
- W2774974037 cites W2487414847 @default.
- W2774974037 cites W2523677622 @default.
- W2774974037 cites W2911964244 @default.
- W2774974037 cites W2919115771 @default.
- W2774974037 cites W2997719488 @default.
- W2774974037 cites W3189115441 @default.
- W2774974037 cites W4237969349 @default.
- W2774974037 cites W4247050267 @default.
- W2774974037 cites W4300187280 @default.
- W2774974037 doi "https://doi.org/10.1002/wcms.1352" @default.
- W2774974037 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5947741" @default.
- W2774974037 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29780432" @default.
- W2774974037 hasPublicationYear "2017" @default.
- W2774974037 type Work @default.
- W2774974037 sameAs 2774974037 @default.
- W2774974037 citedByCount "30" @default.
- W2774974037 countsByYear W27749740372018 @default.
- W2774974037 countsByYear W27749740372019 @default.
- W2774974037 countsByYear W27749740372020 @default.
- W2774974037 countsByYear W27749740372021 @default.
- W2774974037 countsByYear W27749740372022 @default.
- W2774974037 countsByYear W27749740372023 @default.
- W2774974037 crossrefType "journal-article" @default.
- W2774974037 hasAuthorship W2774974037A5051132364 @default.
- W2774974037 hasAuthorship W2774974037A5055569646 @default.
- W2774974037 hasBestOaLocation W27749740371 @default.
- W2774974037 hasConcept C104317684 @default.
- W2774974037 hasConcept C119857082 @default.
- W2774974037 hasConcept C124101348 @default.
- W2774974037 hasConcept C126322002 @default.
- W2774974037 hasConcept C144133560 @default.
- W2774974037 hasConcept C162853370 @default.
- W2774974037 hasConcept C185592680 @default.
- W2774974037 hasConcept C2775905019 @default.
- W2774974037 hasConcept C2910804846 @default.
- W2774974037 hasConcept C29730261 @default.
- W2774974037 hasConcept C41008148 @default.
- W2774974037 hasConcept C55493867 @default.
- W2774974037 hasConcept C71924100 @default.
- W2774974037 hasConcept C86251818 @default.
- W2774974037 hasConceptScore W2774974037C104317684 @default.
- W2774974037 hasConceptScore W2774974037C119857082 @default.
- W2774974037 hasConceptScore W2774974037C124101348 @default.
- W2774974037 hasConceptScore W2774974037C126322002 @default.
- W2774974037 hasConceptScore W2774974037C144133560 @default.
- W2774974037 hasConceptScore W2774974037C162853370 @default.
- W2774974037 hasConceptScore W2774974037C185592680 @default.
- W2774974037 hasConceptScore W2774974037C2775905019 @default.
- W2774974037 hasConceptScore W2774974037C2910804846 @default.
- W2774974037 hasConceptScore W2774974037C29730261 @default.
- W2774974037 hasConceptScore W2774974037C41008148 @default.
- W2774974037 hasConceptScore W2774974037C55493867 @default.
- W2774974037 hasConceptScore W2774974037C71924100 @default.
- W2774974037 hasConceptScore W2774974037C86251818 @default.