Matches in SemOpenAlex for { <https://semopenalex.org/work/W2775033491> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2775033491 endingPage "315" @default.
- W2775033491 startingPage "299" @default.
- W2775033491 abstract "Lithofacies definition in the subsurface is an important factor in modeling, regardless of the scale being at reservoir or basin level. In areas with low exploration level, modeling of lithofacies distribution presents a complicated task as very few inputs are available. For this purpose, a case study in the Požega Valley was selected with only one existing well and several seismic sections within an area covering roughly 850 km2. For the task of expanding the input data set for lithofacies modeling, neural network analysis was performed that incorporated interpreted lithofacies (sandstone, siltite, marl, and breccia-conglomerate) in a single well and attribute data gathered from a seismic section. Three types of different neural networks were used for the analysis: multilayer perceptron, radial-basis function, and probabilistic neural network. As a result, three lithofacies models were built alongside a seismic section based upon predictions acquired from the neural networks. Three lithofacies were successfully predicted on the section while the breccia-conglomerate was either missing or underpredicted and mostly positioned in a geologically invalid interval. Results obtained by single networks differed from one another, which indicated that a result from a single network should not be treated as representative; thus, the facies distribution for modeling should be acquired from either an ensemble of neural networks or several neural networks. Analysis showed the initial potential of the usability of neural networks and seismic attribute analysis on vintage seismic sections with possible drawbacks of the applications being pointed out." @default.
- W2775033491 created "2017-12-22" @default.
- W2775033491 creator A5025570439 @default.
- W2775033491 creator A5028168890 @default.
- W2775033491 creator A5051616295 @default.
- W2775033491 creator A5056931800 @default.
- W2775033491 creator A5066115469 @default.
- W2775033491 creator A5068977160 @default.
- W2775033491 date "2017-12-01" @default.
- W2775033491 modified "2023-10-16" @default.
- W2775033491 title "Application of artificial neural networks for lithofacies determination based on limited well data" @default.
- W2775033491 cites W1777507756 @default.
- W2775033491 cites W1820506354 @default.
- W2775033491 cites W1838191093 @default.
- W2775033491 cites W1860652228 @default.
- W2775033491 cites W1951070941 @default.
- W2775033491 cites W1964168965 @default.
- W2775033491 cites W1970576134 @default.
- W2775033491 cites W2002911289 @default.
- W2775033491 cites W2018358199 @default.
- W2775033491 cites W2026471337 @default.
- W2775033491 cites W2035050694 @default.
- W2775033491 cites W2037509965 @default.
- W2775033491 cites W2042141063 @default.
- W2775033491 cites W2044634012 @default.
- W2775033491 cites W2046351596 @default.
- W2775033491 cites W2151683625 @default.
- W2775033491 cites W2565982626 @default.
- W2775033491 cites W2595891046 @default.
- W2775033491 cites W2724525160 @default.
- W2775033491 cites W1989398372 @default.
- W2775033491 doi "https://doi.org/10.1556/24.60.2017.012" @default.
- W2775033491 hasPublicationYear "2017" @default.
- W2775033491 type Work @default.
- W2775033491 sameAs 2775033491 @default.
- W2775033491 citedByCount "8" @default.
- W2775033491 countsByYear W27750334912018 @default.
- W2775033491 countsByYear W27750334912019 @default.
- W2775033491 countsByYear W27750334912020 @default.
- W2775033491 countsByYear W27750334912021 @default.
- W2775033491 countsByYear W27750334912023 @default.
- W2775033491 crossrefType "journal-article" @default.
- W2775033491 hasAuthorship W2775033491A5025570439 @default.
- W2775033491 hasAuthorship W2775033491A5028168890 @default.
- W2775033491 hasAuthorship W2775033491A5051616295 @default.
- W2775033491 hasAuthorship W2775033491A5056931800 @default.
- W2775033491 hasAuthorship W2775033491A5066115469 @default.
- W2775033491 hasAuthorship W2775033491A5068977160 @default.
- W2775033491 hasBestOaLocation W27750334911 @default.
- W2775033491 hasConcept C106804226 @default.
- W2775033491 hasConcept C109007969 @default.
- W2775033491 hasConcept C111919701 @default.
- W2775033491 hasConcept C114793014 @default.
- W2775033491 hasConcept C127313418 @default.
- W2775033491 hasConcept C146588470 @default.
- W2775033491 hasConcept C154945302 @default.
- W2775033491 hasConcept C165205528 @default.
- W2775033491 hasConcept C2776662147 @default.
- W2775033491 hasConcept C2780129039 @default.
- W2775033491 hasConcept C41008148 @default.
- W2775033491 hasConcept C50644808 @default.
- W2775033491 hasConcept C62074269 @default.
- W2775033491 hasConcept C92927620 @default.
- W2775033491 hasConceptScore W2775033491C106804226 @default.
- W2775033491 hasConceptScore W2775033491C109007969 @default.
- W2775033491 hasConceptScore W2775033491C111919701 @default.
- W2775033491 hasConceptScore W2775033491C114793014 @default.
- W2775033491 hasConceptScore W2775033491C127313418 @default.
- W2775033491 hasConceptScore W2775033491C146588470 @default.
- W2775033491 hasConceptScore W2775033491C154945302 @default.
- W2775033491 hasConceptScore W2775033491C165205528 @default.
- W2775033491 hasConceptScore W2775033491C2776662147 @default.
- W2775033491 hasConceptScore W2775033491C2780129039 @default.
- W2775033491 hasConceptScore W2775033491C41008148 @default.
- W2775033491 hasConceptScore W2775033491C50644808 @default.
- W2775033491 hasConceptScore W2775033491C62074269 @default.
- W2775033491 hasConceptScore W2775033491C92927620 @default.
- W2775033491 hasIssue "3" @default.
- W2775033491 hasLocation W27750334911 @default.
- W2775033491 hasLocation W27750334912 @default.
- W2775033491 hasOpenAccess W2775033491 @default.
- W2775033491 hasPrimaryLocation W27750334911 @default.
- W2775033491 hasRelatedWork W1487737211 @default.
- W2775033491 hasRelatedWork W1665074931 @default.
- W2775033491 hasRelatedWork W2094899749 @default.
- W2775033491 hasRelatedWork W2137978805 @default.
- W2775033491 hasRelatedWork W2460257452 @default.
- W2775033491 hasRelatedWork W2613872155 @default.
- W2775033491 hasRelatedWork W2746253740 @default.
- W2775033491 hasRelatedWork W4242904446 @default.
- W2775033491 hasRelatedWork W4255115017 @default.
- W2775033491 hasRelatedWork W2108341856 @default.
- W2775033491 hasVolume "60" @default.
- W2775033491 isParatext "false" @default.
- W2775033491 isRetracted "false" @default.
- W2775033491 magId "2775033491" @default.
- W2775033491 workType "article" @default.