Matches in SemOpenAlex for { <https://semopenalex.org/work/W2775097868> ?p ?o ?g. }
- W2775097868 endingPage "53" @default.
- W2775097868 startingPage "41" @default.
- W2775097868 abstract "This paper investigates Bayesian methods for aerospace system reliability analysis using various sources of test data and expert knowledge at both subsystem and system levels. Four scenarios based on available information for the priors and test data of a system and/or subsystems are studied using specific Bayesian inference techniques. This paper proposes the Bayesian melding method for integrating subsystem-level priors with system-level priors for both system- and subsystem-level reliability analysis. System and subsystem reliability outcomes are compared under different scenarios. Computational challenges for posterior inferences using the sophisticated Bayesian melding method are addressed using Markov Chain Monte Carlo (MCMC) and adaptive Sampling Importance Re-sampling (SIR) methods. A case study with simulation results illustrates the applications of the proposed methods and provides insights for aerospace system reliability analysis using available multilevel information." @default.
- W2775097868 created "2017-12-22" @default.
- W2775097868 creator A5043223644 @default.
- W2775097868 creator A5047036161 @default.
- W2775097868 creator A5054291191 @default.
- W2775097868 date "2018-01-01" @default.
- W2775097868 modified "2023-10-02" @default.
- W2775097868 title "A Bayesian approach for integrating multilevel priors and data for aerospace system reliability assessment" @default.
- W2775097868 cites W1511313750 @default.
- W2775097868 cites W1933513546 @default.
- W2775097868 cites W1971515916 @default.
- W2775097868 cites W1987443112 @default.
- W2775097868 cites W1988446510 @default.
- W2775097868 cites W2008202990 @default.
- W2775097868 cites W2011147764 @default.
- W2775097868 cites W2014441733 @default.
- W2775097868 cites W2014898647 @default.
- W2775097868 cites W2016903270 @default.
- W2775097868 cites W2018815923 @default.
- W2775097868 cites W2020999234 @default.
- W2775097868 cites W2029066367 @default.
- W2775097868 cites W2040011853 @default.
- W2775097868 cites W2049588492 @default.
- W2775097868 cites W2056760934 @default.
- W2775097868 cites W2079777527 @default.
- W2775097868 cites W2083899047 @default.
- W2775097868 cites W2093095043 @default.
- W2775097868 cites W2095430756 @default.
- W2775097868 cites W2100326009 @default.
- W2775097868 cites W2108135300 @default.
- W2775097868 cites W2138309709 @default.
- W2775097868 cites W2462462151 @default.
- W2775097868 cites W2794515326 @default.
- W2775097868 cites W4232685182 @default.
- W2775097868 cites W4236652809 @default.
- W2775097868 cites W4246386643 @default.
- W2775097868 doi "https://doi.org/10.1016/j.cja.2017.08.020" @default.
- W2775097868 hasPublicationYear "2018" @default.
- W2775097868 type Work @default.
- W2775097868 sameAs 2775097868 @default.
- W2775097868 citedByCount "33" @default.
- W2775097868 countsByYear W27750978682018 @default.
- W2775097868 countsByYear W27750978682019 @default.
- W2775097868 countsByYear W27750978682020 @default.
- W2775097868 countsByYear W27750978682021 @default.
- W2775097868 countsByYear W27750978682022 @default.
- W2775097868 countsByYear W27750978682023 @default.
- W2775097868 crossrefType "journal-article" @default.
- W2775097868 hasAuthorship W2775097868A5043223644 @default.
- W2775097868 hasAuthorship W2775097868A5047036161 @default.
- W2775097868 hasAuthorship W2775097868A5054291191 @default.
- W2775097868 hasBestOaLocation W27750978681 @default.
- W2775097868 hasConcept C106131492 @default.
- W2775097868 hasConcept C107673813 @default.
- W2775097868 hasConcept C111350023 @default.
- W2775097868 hasConcept C119857082 @default.
- W2775097868 hasConcept C121332964 @default.
- W2775097868 hasConcept C124101348 @default.
- W2775097868 hasConcept C127413603 @default.
- W2775097868 hasConcept C140779682 @default.
- W2775097868 hasConcept C146978453 @default.
- W2775097868 hasConcept C154945302 @default.
- W2775097868 hasConcept C160234255 @default.
- W2775097868 hasConcept C163258240 @default.
- W2775097868 hasConcept C167740415 @default.
- W2775097868 hasConcept C177769412 @default.
- W2775097868 hasConcept C191413810 @default.
- W2775097868 hasConcept C200601418 @default.
- W2775097868 hasConcept C2776214188 @default.
- W2775097868 hasConcept C31972630 @default.
- W2775097868 hasConcept C41008148 @default.
- W2775097868 hasConcept C43214815 @default.
- W2775097868 hasConcept C62520636 @default.
- W2775097868 hasConcept C98763669 @default.
- W2775097868 hasConceptScore W2775097868C106131492 @default.
- W2775097868 hasConceptScore W2775097868C107673813 @default.
- W2775097868 hasConceptScore W2775097868C111350023 @default.
- W2775097868 hasConceptScore W2775097868C119857082 @default.
- W2775097868 hasConceptScore W2775097868C121332964 @default.
- W2775097868 hasConceptScore W2775097868C124101348 @default.
- W2775097868 hasConceptScore W2775097868C127413603 @default.
- W2775097868 hasConceptScore W2775097868C140779682 @default.
- W2775097868 hasConceptScore W2775097868C146978453 @default.
- W2775097868 hasConceptScore W2775097868C154945302 @default.
- W2775097868 hasConceptScore W2775097868C160234255 @default.
- W2775097868 hasConceptScore W2775097868C163258240 @default.
- W2775097868 hasConceptScore W2775097868C167740415 @default.
- W2775097868 hasConceptScore W2775097868C177769412 @default.
- W2775097868 hasConceptScore W2775097868C191413810 @default.
- W2775097868 hasConceptScore W2775097868C200601418 @default.
- W2775097868 hasConceptScore W2775097868C2776214188 @default.
- W2775097868 hasConceptScore W2775097868C31972630 @default.
- W2775097868 hasConceptScore W2775097868C41008148 @default.
- W2775097868 hasConceptScore W2775097868C43214815 @default.
- W2775097868 hasConceptScore W2775097868C62520636 @default.
- W2775097868 hasConceptScore W2775097868C98763669 @default.
- W2775097868 hasIssue "1" @default.
- W2775097868 hasLocation W27750978681 @default.