Matches in SemOpenAlex for { <https://semopenalex.org/work/W2775159301> ?p ?o ?g. }
- W2775159301 abstract "Context: Recent studies have shown that performance of defect prediction models can be affected when data sampling approaches are applied to imbalanced training data for building defect prediction models. However, the magnitude (degree and power) of the effect of these sampling methods on the classification and prioritization performances of defect prediction models is still unknown. Goal: To investigate the statistical and practical significance of using resampled data for constructing defect prediction models. Method: We examine the practical effects of six data sampling methods on performances of five defect prediction models. The prediction performances of the models trained on default datasets (no sampling method) are compared with that of the models trained on resampled datasets (application of sampling methods). To decide whether the performance changes are significant or not, robust statistical tests are performed and effect sizes computed. Twenty releases of ten open source projects extracted from the PROMISE repository are considered and evaluated using the AUC, pd, pf and G-mean performance measures. Results: There are statistical significant differences and practical effects on the classification performance (pd, pf and G-mean) between models trained on resampled datasets and those trained on the default datasets. However, sampling methods have no statistical and practical effects on defect prioritization performance (AUC) with small or no effect values obtained from the models trained on the resampled datasets. Conclusions: Existing sampling methods can properly set the threshold between buggy and clean samples, while they cannot improve the prediction of defect-proneness itself. Sampling methods are highly recommended for defect classification purposes when all faulty modules are to be considered for testing." @default.
- W2775159301 created "2017-12-22" @default.
- W2775159301 creator A5012394915 @default.
- W2775159301 creator A5020836505 @default.
- W2775159301 creator A5022069660 @default.
- W2775159301 creator A5051403641 @default.
- W2775159301 creator A5078686662 @default.
- W2775159301 date "2017-11-01" @default.
- W2775159301 modified "2023-09-30" @default.
- W2775159301 title "The Significant Effects of Data Sampling Approaches on Software Defect Prioritization and Classification" @default.
- W2775159301 cites W1496056137 @default.
- W2775159301 cites W1974079881 @default.
- W2775159301 cites W1975040830 @default.
- W2775159301 cites W1978813754 @default.
- W2775159301 cites W1984026144 @default.
- W2775159301 cites W1986515506 @default.
- W2775159301 cites W1989141971 @default.
- W2775159301 cites W1992331847 @default.
- W2775159301 cites W2008596407 @default.
- W2775159301 cites W2009786711 @default.
- W2775159301 cites W2014455254 @default.
- W2775159301 cites W2019338079 @default.
- W2775159301 cites W2021688474 @default.
- W2775159301 cites W2025700486 @default.
- W2775159301 cites W2059171296 @default.
- W2775159301 cites W2072043274 @default.
- W2775159301 cites W2103715428 @default.
- W2775159301 cites W2105776892 @default.
- W2775159301 cites W2107026277 @default.
- W2775159301 cites W2120457925 @default.
- W2775159301 cites W2122111042 @default.
- W2775159301 cites W2125999269 @default.
- W2775159301 cites W2126626812 @default.
- W2775159301 cites W2130883460 @default.
- W2775159301 cites W2132791018 @default.
- W2775159301 cites W2137235241 @default.
- W2775159301 cites W2141051748 @default.
- W2775159301 cites W2146338950 @default.
- W2775159301 cites W2148143831 @default.
- W2775159301 cites W2168453597 @default.
- W2775159301 cites W2424693453 @default.
- W2775159301 cites W2510312579 @default.
- W2775159301 cites W2528160956 @default.
- W2775159301 cites W3141989311 @default.
- W2775159301 cites W3144867374 @default.
- W2775159301 doi "https://doi.org/10.1109/esem.2017.50" @default.
- W2775159301 hasPublicationYear "2017" @default.
- W2775159301 type Work @default.
- W2775159301 sameAs 2775159301 @default.
- W2775159301 citedByCount "22" @default.
- W2775159301 countsByYear W27751593012018 @default.
- W2775159301 countsByYear W27751593012019 @default.
- W2775159301 countsByYear W27751593012020 @default.
- W2775159301 countsByYear W27751593012021 @default.
- W2775159301 countsByYear W27751593012022 @default.
- W2775159301 countsByYear W27751593012023 @default.
- W2775159301 crossrefType "proceedings-article" @default.
- W2775159301 hasAuthorship W2775159301A5012394915 @default.
- W2775159301 hasAuthorship W2775159301A5020836505 @default.
- W2775159301 hasAuthorship W2775159301A5022069660 @default.
- W2775159301 hasAuthorship W2775159301A5051403641 @default.
- W2775159301 hasAuthorship W2775159301A5078686662 @default.
- W2775159301 hasConcept C105795698 @default.
- W2775159301 hasConcept C106131492 @default.
- W2775159301 hasConcept C119857082 @default.
- W2775159301 hasConcept C124101348 @default.
- W2775159301 hasConcept C127413603 @default.
- W2775159301 hasConcept C140779682 @default.
- W2775159301 hasConcept C151730666 @default.
- W2775159301 hasConcept C154945302 @default.
- W2775159301 hasConcept C199360897 @default.
- W2775159301 hasConcept C2777615720 @default.
- W2775159301 hasConcept C2777904410 @default.
- W2775159301 hasConcept C2779343474 @default.
- W2775159301 hasConcept C31972630 @default.
- W2775159301 hasConcept C33923547 @default.
- W2775159301 hasConcept C41008148 @default.
- W2775159301 hasConcept C45804977 @default.
- W2775159301 hasConcept C51632099 @default.
- W2775159301 hasConcept C539667460 @default.
- W2775159301 hasConcept C58489278 @default.
- W2775159301 hasConcept C67186912 @default.
- W2775159301 hasConcept C77088390 @default.
- W2775159301 hasConcept C86803240 @default.
- W2775159301 hasConceptScore W2775159301C105795698 @default.
- W2775159301 hasConceptScore W2775159301C106131492 @default.
- W2775159301 hasConceptScore W2775159301C119857082 @default.
- W2775159301 hasConceptScore W2775159301C124101348 @default.
- W2775159301 hasConceptScore W2775159301C127413603 @default.
- W2775159301 hasConceptScore W2775159301C140779682 @default.
- W2775159301 hasConceptScore W2775159301C151730666 @default.
- W2775159301 hasConceptScore W2775159301C154945302 @default.
- W2775159301 hasConceptScore W2775159301C199360897 @default.
- W2775159301 hasConceptScore W2775159301C2777615720 @default.
- W2775159301 hasConceptScore W2775159301C2777904410 @default.
- W2775159301 hasConceptScore W2775159301C2779343474 @default.
- W2775159301 hasConceptScore W2775159301C31972630 @default.
- W2775159301 hasConceptScore W2775159301C33923547 @default.
- W2775159301 hasConceptScore W2775159301C41008148 @default.
- W2775159301 hasConceptScore W2775159301C45804977 @default.