Matches in SemOpenAlex for { <https://semopenalex.org/work/W2775275899> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2775275899 abstract "Many real-world applications are characterized by temporal data collected from multiple modalities, each sampled with a different resolution. Examples include manufacturing processes and financial market prediction. In these applications, an interesting observation is that within the same modality, we often have data from multiple views, thus naturally forming a 2-level hierarchy: with the multiple modalities on the top, and the multiple views at the bottom. For example, in aluminum smelting processes, the multiple modalities include power, noise, alumina feed, etc; and within the same modality such as power, the different views correspond to various voltage, current and resistance control signals and measured responses. For such applications, we aim to address the following challenge, i.e., how can we integrate such multi-modality multi-resolution data to effectively predict the targets of interest, such as bath temperature in aluminum smelting cell and the volatility in financial market. In this paper, for the first time, we simultaneously model the hierarchical data structure and the multi-resolution property via a novel framework named HiMuV. Different from existing work based on multiple views on a single level or a single resolution, the proposed framework is based on the key assumption that the information from different modalities is complementary, whereas the information within the same modality (across different views) is redundant in terms of predicting the targets of interest. Therefore, we introduce an optimization framework where the objective function contains both the prediction loss and a novel regularizer enforcing the consistency among different views within the same modality. To solve this optimization framework, we propose an iterative algorithm based on randomized block coordinate descent. Experimental results on synthetic data, benchmark data, and various real data sets from aluminum smelting processes, and stock market prediction demonstrate the effectiveness and efficiency of the proposed algorithm." @default.
- W2775275899 created "2017-12-22" @default.
- W2775275899 creator A5005070956 @default.
- W2775275899 creator A5057639889 @default.
- W2775275899 creator A5073158087 @default.
- W2775275899 date "2017-11-01" @default.
- W2775275899 modified "2023-09-24" @default.
- W2775275899 title "HiMuV: Hierarchical Framework for Modeling Multi-modality Multi-resolution Data" @default.
- W2775275899 cites W1536675765 @default.
- W2775275899 cites W1969048569 @default.
- W2775275899 cites W1979255715 @default.
- W2775275899 cites W2019772693 @default.
- W2775275899 cites W2020666693 @default.
- W2775275899 cites W2024493546 @default.
- W2775275899 cites W2037625889 @default.
- W2775275899 cites W2048679005 @default.
- W2775275899 cites W2053110996 @default.
- W2775275899 cites W2071207147 @default.
- W2775275899 cites W2076170369 @default.
- W2775275899 cites W2078559879 @default.
- W2775275899 cites W2082961314 @default.
- W2775275899 cites W2085789144 @default.
- W2775275899 cites W2117686388 @default.
- W2775275899 cites W2159399339 @default.
- W2775275899 cites W2163150150 @default.
- W2775275899 cites W2167820643 @default.
- W2775275899 cites W2280154071 @default.
- W2775275899 cites W2330713198 @default.
- W2775275899 cites W2547107546 @default.
- W2775275899 cites W2623710949 @default.
- W2775275899 doi "https://doi.org/10.1109/icdm.2017.36" @default.
- W2775275899 hasPublicationYear "2017" @default.
- W2775275899 type Work @default.
- W2775275899 sameAs 2775275899 @default.
- W2775275899 citedByCount "1" @default.
- W2775275899 countsByYear W27752758992020 @default.
- W2775275899 crossrefType "proceedings-article" @default.
- W2775275899 hasAuthorship W2775275899A5005070956 @default.
- W2775275899 hasAuthorship W2775275899A5057639889 @default.
- W2775275899 hasAuthorship W2775275899A5073158087 @default.
- W2775275899 hasConcept C119857082 @default.
- W2775275899 hasConcept C124101348 @default.
- W2775275899 hasConcept C144024400 @default.
- W2775275899 hasConcept C154945302 @default.
- W2775275899 hasConcept C162324750 @default.
- W2775275899 hasConcept C2776436953 @default.
- W2775275899 hasConcept C2779903281 @default.
- W2775275899 hasConcept C2780226545 @default.
- W2775275899 hasConcept C31170391 @default.
- W2775275899 hasConcept C34447519 @default.
- W2775275899 hasConcept C36289849 @default.
- W2775275899 hasConcept C41008148 @default.
- W2775275899 hasConcept C67186912 @default.
- W2775275899 hasConcept C77088390 @default.
- W2775275899 hasConceptScore W2775275899C119857082 @default.
- W2775275899 hasConceptScore W2775275899C124101348 @default.
- W2775275899 hasConceptScore W2775275899C144024400 @default.
- W2775275899 hasConceptScore W2775275899C154945302 @default.
- W2775275899 hasConceptScore W2775275899C162324750 @default.
- W2775275899 hasConceptScore W2775275899C2776436953 @default.
- W2775275899 hasConceptScore W2775275899C2779903281 @default.
- W2775275899 hasConceptScore W2775275899C2780226545 @default.
- W2775275899 hasConceptScore W2775275899C31170391 @default.
- W2775275899 hasConceptScore W2775275899C34447519 @default.
- W2775275899 hasConceptScore W2775275899C36289849 @default.
- W2775275899 hasConceptScore W2775275899C41008148 @default.
- W2775275899 hasConceptScore W2775275899C67186912 @default.
- W2775275899 hasConceptScore W2775275899C77088390 @default.
- W2775275899 hasLocation W27752758991 @default.
- W2775275899 hasOpenAccess W2775275899 @default.
- W2775275899 hasPrimaryLocation W27752758991 @default.
- W2775275899 hasRelatedWork W2004831463 @default.
- W2775275899 hasRelatedWork W2096647984 @default.
- W2775275899 hasRelatedWork W2110287964 @default.
- W2775275899 hasRelatedWork W2383394264 @default.
- W2775275899 hasRelatedWork W2961085424 @default.
- W2775275899 hasRelatedWork W3125968744 @default.
- W2775275899 hasRelatedWork W4224266612 @default.
- W2775275899 hasRelatedWork W4293261942 @default.
- W2775275899 hasRelatedWork W4320153225 @default.
- W2775275899 hasRelatedWork W73545470 @default.
- W2775275899 isParatext "false" @default.
- W2775275899 isRetracted "false" @default.
- W2775275899 magId "2775275899" @default.
- W2775275899 workType "article" @default.