Matches in SemOpenAlex for { <https://semopenalex.org/work/W2775403132> ?p ?o ?g. }
- W2775403132 endingPage "2096" @default.
- W2775403132 startingPage "2082" @default.
- W2775403132 abstract "In this paper, a new robust Kalman filtering framework for a linear system with non-Gaussian heavy-tailed and/or skewed state and measurement noises is proposed through modeling one-step prediction and likelihood probability density functions as Gaussian scale mixture (GSM) distributions. The state vector, mixing parameters, scale matrices, and shape parameters are simultaneously inferred utilizing standard variational Bayesian approach. As the implementations of the proposed method, several solutions corresponding to some special GSM distributions are derived. The proposed robust Kalman filters are tested in a manoeuvring target tracking example. Simulation results show that the proposed robust Kalman filters have a better estimation accuracy and smaller biases compared to the existing state-of-the-art Kalman filters." @default.
- W2775403132 created "2017-12-22" @default.
- W2775403132 creator A5025136019 @default.
- W2775403132 creator A5041251125 @default.
- W2775403132 creator A5064963854 @default.
- W2775403132 creator A5068626745 @default.
- W2775403132 creator A5083892296 @default.
- W2775403132 creator A5091074416 @default.
- W2775403132 date "2019-10-01" @default.
- W2775403132 modified "2023-10-14" @default.
- W2775403132 title "Robust Kalman Filters Based on Gaussian Scale Mixture Distributions With Application to Target Tracking" @default.
- W2775403132 cites W1979731521 @default.
- W2775403132 cites W1980885700 @default.
- W2775403132 cites W1984689183 @default.
- W2775403132 cites W2000721204 @default.
- W2775403132 cites W2012526720 @default.
- W2775403132 cites W2042688433 @default.
- W2775403132 cites W2050114157 @default.
- W2775403132 cites W2056218686 @default.
- W2775403132 cites W2064517238 @default.
- W2775403132 cites W2083954410 @default.
- W2775403132 cites W2086693977 @default.
- W2775403132 cites W2088735810 @default.
- W2775403132 cites W2165077360 @default.
- W2775403132 cites W2261136061 @default.
- W2775403132 cites W2281024414 @default.
- W2775403132 cites W2294322297 @default.
- W2775403132 cites W2327058717 @default.
- W2775403132 cites W2395026957 @default.
- W2775403132 cites W2510333599 @default.
- W2775403132 cites W2515608301 @default.
- W2775403132 cites W2538619708 @default.
- W2775403132 cites W2559831896 @default.
- W2775403132 cites W2566269102 @default.
- W2775403132 cites W2572262903 @default.
- W2775403132 cites W2575097171 @default.
- W2775403132 cites W2613225548 @default.
- W2775403132 cites W2736851647 @default.
- W2775403132 cites W2737188128 @default.
- W2775403132 cites W2746291398 @default.
- W2775403132 cites W2749496335 @default.
- W2775403132 cites W4230624888 @default.
- W2775403132 cites W4238162340 @default.
- W2775403132 doi "https://doi.org/10.1109/tsmc.2017.2778269" @default.
- W2775403132 hasPublicationYear "2019" @default.
- W2775403132 type Work @default.
- W2775403132 sameAs 2775403132 @default.
- W2775403132 citedByCount "115" @default.
- W2775403132 countsByYear W27754031322018 @default.
- W2775403132 countsByYear W27754031322019 @default.
- W2775403132 countsByYear W27754031322020 @default.
- W2775403132 countsByYear W27754031322021 @default.
- W2775403132 countsByYear W27754031322022 @default.
- W2775403132 countsByYear W27754031322023 @default.
- W2775403132 crossrefType "journal-article" @default.
- W2775403132 hasAuthorship W2775403132A5025136019 @default.
- W2775403132 hasAuthorship W2775403132A5041251125 @default.
- W2775403132 hasAuthorship W2775403132A5064963854 @default.
- W2775403132 hasAuthorship W2775403132A5068626745 @default.
- W2775403132 hasAuthorship W2775403132A5083892296 @default.
- W2775403132 hasAuthorship W2775403132A5091074416 @default.
- W2775403132 hasConcept C11413529 @default.
- W2775403132 hasConcept C121332964 @default.
- W2775403132 hasConcept C150679823 @default.
- W2775403132 hasConcept C154945302 @default.
- W2775403132 hasConcept C157286648 @default.
- W2775403132 hasConcept C15744967 @default.
- W2775403132 hasConcept C163716315 @default.
- W2775403132 hasConcept C19417346 @default.
- W2775403132 hasConcept C206833254 @default.
- W2775403132 hasConcept C2775924081 @default.
- W2775403132 hasConcept C2775936607 @default.
- W2775403132 hasConcept C2777798563 @default.
- W2775403132 hasConcept C2778755073 @default.
- W2775403132 hasConcept C33923547 @default.
- W2775403132 hasConcept C41008148 @default.
- W2775403132 hasConcept C47446073 @default.
- W2775403132 hasConcept C62520636 @default.
- W2775403132 hasConcept C74650414 @default.
- W2775403132 hasConceptScore W2775403132C11413529 @default.
- W2775403132 hasConceptScore W2775403132C121332964 @default.
- W2775403132 hasConceptScore W2775403132C150679823 @default.
- W2775403132 hasConceptScore W2775403132C154945302 @default.
- W2775403132 hasConceptScore W2775403132C157286648 @default.
- W2775403132 hasConceptScore W2775403132C15744967 @default.
- W2775403132 hasConceptScore W2775403132C163716315 @default.
- W2775403132 hasConceptScore W2775403132C19417346 @default.
- W2775403132 hasConceptScore W2775403132C206833254 @default.
- W2775403132 hasConceptScore W2775403132C2775924081 @default.
- W2775403132 hasConceptScore W2775403132C2775936607 @default.
- W2775403132 hasConceptScore W2775403132C2777798563 @default.
- W2775403132 hasConceptScore W2775403132C2778755073 @default.
- W2775403132 hasConceptScore W2775403132C33923547 @default.
- W2775403132 hasConceptScore W2775403132C41008148 @default.
- W2775403132 hasConceptScore W2775403132C47446073 @default.
- W2775403132 hasConceptScore W2775403132C62520636 @default.
- W2775403132 hasConceptScore W2775403132C74650414 @default.
- W2775403132 hasFunder F4320321001 @default.