Matches in SemOpenAlex for { <https://semopenalex.org/work/W2775650623> ?p ?o ?g. }
- W2775650623 endingPage "149" @default.
- W2775650623 startingPage "144" @default.
- W2775650623 abstract "Description of the patterns of ground reaction force is a standard method in areas such as medicine, biomechanics and robotics. The fundamental parameter is the time course of the force, which is classified visually in particular in the field of clinical diagnostics. Here, the knowledge and experience of the diagnostician is relevant for its assessment. For an objective and valid discrimination of the ground reaction force pattern, a generic method, especially in the medical field, is absolutely necessary to describe the qualities of the time-course. The aim of the presented method was to combine the approaches of two existing procedures from the fields of machine learning and the Gauss approximation in order to take advantages of both methods for the classification of ground reaction force patterns. The current limitations of both methods could be eliminated by an overarching method. Twenty-nine male athletes from different sports were examined. Each participant was given the task of performing a one-legged stopping maneuver on a force plate from the maximum possible starting speed. The individual time course of the ground reaction force of each subject was registered and approximated on the basis of eight Gaussian distributions. The descriptive coefficients were then classified using Bayesian regulated neural networks. The different sports served as the distinguishing feature. Although the athletes were all given the same task, all sports referred to a different quality in the time course of ground reaction force. Meanwhile within each sport, the athletes were homogeneous. With an overall prediction (R = 0.938) all subjects/sports were classified correctly with 94.29% accuracy. The combination of the two methods: the mathematical description of the time course of ground reaction forces on the basis of Gaussian distributions and their classification by means of Bayesian regulated neural networks, seems an adequate and promising method to discriminate the ground reaction forces without any loss of information." @default.
- W2775650623 created "2017-12-22" @default.
- W2775650623 creator A5016138734 @default.
- W2775650623 creator A5050171085 @default.
- W2775650623 creator A5087715970 @default.
- W2775650623 date "2018-01-01" @default.
- W2775650623 modified "2023-09-25" @default.
- W2775650623 title "Enhancement of force patterns classification based on Gaussian distributions" @default.
- W2775650623 cites W1574802948 @default.
- W2775650623 cites W1976565753 @default.
- W2775650623 cites W1980891728 @default.
- W2775650623 cites W1993853204 @default.
- W2775650623 cites W2024041957 @default.
- W2775650623 cites W2026736881 @default.
- W2775650623 cites W2028716812 @default.
- W2775650623 cites W2036915912 @default.
- W2775650623 cites W2047122567 @default.
- W2775650623 cites W2049036800 @default.
- W2775650623 cites W2051731945 @default.
- W2775650623 cites W2052665858 @default.
- W2775650623 cites W2062474264 @default.
- W2775650623 cites W2072941274 @default.
- W2775650623 cites W2090923619 @default.
- W2775650623 cites W2095807272 @default.
- W2775650623 cites W2113247034 @default.
- W2775650623 cites W2120085742 @default.
- W2775650623 cites W2135694465 @default.
- W2775650623 cites W2162167832 @default.
- W2775650623 cites W2168770196 @default.
- W2775650623 cites W2169255678 @default.
- W2775650623 cites W2172221190 @default.
- W2775650623 doi "https://doi.org/10.1016/j.jbiomech.2017.12.006" @default.
- W2775650623 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29276071" @default.
- W2775650623 hasPublicationYear "2018" @default.
- W2775650623 type Work @default.
- W2775650623 sameAs 2775650623 @default.
- W2775650623 citedByCount "7" @default.
- W2775650623 countsByYear W27756506232019 @default.
- W2775650623 countsByYear W27756506232020 @default.
- W2775650623 countsByYear W27756506232021 @default.
- W2775650623 countsByYear W27756506232022 @default.
- W2775650623 crossrefType "journal-article" @default.
- W2775650623 hasAuthorship W2775650623A5016138734 @default.
- W2775650623 hasAuthorship W2775650623A5050171085 @default.
- W2775650623 hasAuthorship W2775650623A5087715970 @default.
- W2775650623 hasConcept C10803110 @default.
- W2775650623 hasConcept C119857082 @default.
- W2775650623 hasConcept C121332964 @default.
- W2775650623 hasConcept C127413603 @default.
- W2775650623 hasConcept C153180895 @default.
- W2775650623 hasConcept C154945302 @default.
- W2775650623 hasConcept C161794534 @default.
- W2775650623 hasConcept C163716315 @default.
- W2775650623 hasConcept C201995342 @default.
- W2775650623 hasConcept C202444582 @default.
- W2775650623 hasConcept C2780451532 @default.
- W2775650623 hasConcept C33923547 @default.
- W2775650623 hasConcept C39920418 @default.
- W2775650623 hasConcept C41008148 @default.
- W2775650623 hasConcept C62520636 @default.
- W2775650623 hasConcept C74650414 @default.
- W2775650623 hasConcept C96332660 @default.
- W2775650623 hasConcept C9652623 @default.
- W2775650623 hasConceptScore W2775650623C10803110 @default.
- W2775650623 hasConceptScore W2775650623C119857082 @default.
- W2775650623 hasConceptScore W2775650623C121332964 @default.
- W2775650623 hasConceptScore W2775650623C127413603 @default.
- W2775650623 hasConceptScore W2775650623C153180895 @default.
- W2775650623 hasConceptScore W2775650623C154945302 @default.
- W2775650623 hasConceptScore W2775650623C161794534 @default.
- W2775650623 hasConceptScore W2775650623C163716315 @default.
- W2775650623 hasConceptScore W2775650623C201995342 @default.
- W2775650623 hasConceptScore W2775650623C202444582 @default.
- W2775650623 hasConceptScore W2775650623C2780451532 @default.
- W2775650623 hasConceptScore W2775650623C33923547 @default.
- W2775650623 hasConceptScore W2775650623C39920418 @default.
- W2775650623 hasConceptScore W2775650623C41008148 @default.
- W2775650623 hasConceptScore W2775650623C62520636 @default.
- W2775650623 hasConceptScore W2775650623C74650414 @default.
- W2775650623 hasConceptScore W2775650623C96332660 @default.
- W2775650623 hasConceptScore W2775650623C9652623 @default.
- W2775650623 hasLocation W27756506231 @default.
- W2775650623 hasLocation W27756506232 @default.
- W2775650623 hasOpenAccess W2775650623 @default.
- W2775650623 hasPrimaryLocation W27756506231 @default.
- W2775650623 hasRelatedWork W2384300519 @default.
- W2775650623 hasRelatedWork W2775650623 @default.
- W2775650623 hasRelatedWork W2961085424 @default.
- W2775650623 hasRelatedWork W4286629047 @default.
- W2775650623 hasRelatedWork W4288754364 @default.
- W2775650623 hasRelatedWork W4306321456 @default.
- W2775650623 hasRelatedWork W4306674287 @default.
- W2775650623 hasRelatedWork W4308734192 @default.
- W2775650623 hasRelatedWork W4312831135 @default.
- W2775650623 hasRelatedWork W4224009465 @default.
- W2775650623 hasVolume "67" @default.
- W2775650623 isParatext "false" @default.
- W2775650623 isRetracted "false" @default.