Matches in SemOpenAlex for { <https://semopenalex.org/work/W2775766718> ?p ?o ?g. }
- W2775766718 endingPage "O44" @default.
- W2775766718 startingPage "O31" @default.
- W2775766718 abstract "With the rapid development in seismic attribute and interpretation techniques, interpreters can be overwhelmed by the number of attributes at their disposal. Pattern recognition-driven seismic facies analysis provides a means to identify subtle variations across multiple attributes that may only be partially defined on a single attribute. Typically, interpreters intuitively choose input attributes for multiattribute facies analysis based on their experience and the geologic target of interest. However, such an approach may overlook unsuspected or subtle features hidden in the data. We therefore augment this qualitative attribute selection process with quantitative measures of candidate attributes that best differentiate features of interest. Instead of selecting a group of attributes and assuming all the selected attributes contribute equally to the facies map, we weight the interpreter-selected input attributes based on their response from the unsupervised learning algorithm and the interpreter’s knowledge. In other words, we expect the weights to represent “which attribute is ‘favored’ by an interpreter as input for unsupervised learning” from an interpretation perspective and “which attribute is ‘favored’ by the learning algorithm” from a data-driven perspective. Therefore, we claim the weights are user guided and data adaptive, as the derivation of weight for each input attribute is embedded into the learning algorithm, providing a specific measurement tailored to the selected learning algorithm, while still taking the interpreter’s knowledge into account. We develop our workflow using Barnett Shale surveys and an unsupervised self-organizing map seismic facies analysis algorithm. We found that the proposed weighting-based attribute selection method better differentiates features of interest than using equally weighted input attributes. Furthermore, the weight values provide insights into dependency among input attributes." @default.
- W2775766718 created "2017-12-22" @default.
- W2775766718 creator A5019631344 @default.
- W2775766718 creator A5020012026 @default.
- W2775766718 creator A5024397951 @default.
- W2775766718 date "2018-03-01" @default.
- W2775766718 modified "2023-10-04" @default.
- W2775766718 title "Seismic attribute selection for unsupervised seismic facies analysis using user-guided data-adaptive weights" @default.
- W2775766718 cites W1510890381 @default.
- W2775766718 cites W1887300875 @default.
- W2775766718 cites W1910501430 @default.
- W2775766718 cites W1966427402 @default.
- W2775766718 cites W1983381046 @default.
- W2775766718 cites W1997535158 @default.
- W2775766718 cites W2018073736 @default.
- W2775766718 cites W2020750452 @default.
- W2775766718 cites W2021606167 @default.
- W2775766718 cites W2024274875 @default.
- W2775766718 cites W2029158756 @default.
- W2775766718 cites W2040655138 @default.
- W2775766718 cites W2044170407 @default.
- W2775766718 cites W2044436217 @default.
- W2775766718 cites W2050610688 @default.
- W2775766718 cites W2055520435 @default.
- W2775766718 cites W2061631377 @default.
- W2775766718 cites W2065149320 @default.
- W2775766718 cites W2080739269 @default.
- W2775766718 cites W2084200478 @default.
- W2775766718 cites W2102070657 @default.
- W2775766718 cites W2106092743 @default.
- W2775766718 cites W2108639531 @default.
- W2775766718 cites W2138792400 @default.
- W2775766718 cites W2139431667 @default.
- W2775766718 cites W2147558165 @default.
- W2775766718 cites W2168894667 @default.
- W2775766718 cites W2171005016 @default.
- W2775766718 cites W2171850154 @default.
- W2775766718 cites W2190197363 @default.
- W2775766718 cites W2194920534 @default.
- W2775766718 cites W2280342932 @default.
- W2775766718 cites W2565242241 @default.
- W2775766718 cites W2587301121 @default.
- W2775766718 cites W2607754008 @default.
- W2775766718 cites W2626945693 @default.
- W2775766718 cites W2993759822 @default.
- W2775766718 cites W65738273 @default.
- W2775766718 doi "https://doi.org/10.1190/geo2017-0192.1" @default.
- W2775766718 hasPublicationYear "2018" @default.
- W2775766718 type Work @default.
- W2775766718 sameAs 2775766718 @default.
- W2775766718 citedByCount "32" @default.
- W2775766718 countsByYear W27757667182019 @default.
- W2775766718 countsByYear W27757667182020 @default.
- W2775766718 countsByYear W27757667182021 @default.
- W2775766718 countsByYear W27757667182022 @default.
- W2775766718 countsByYear W27757667182023 @default.
- W2775766718 crossrefType "journal-article" @default.
- W2775766718 hasAuthorship W2775766718A5019631344 @default.
- W2775766718 hasAuthorship W2775766718A5020012026 @default.
- W2775766718 hasAuthorship W2775766718A5024397951 @default.
- W2775766718 hasConcept C109007969 @default.
- W2775766718 hasConcept C111919701 @default.
- W2775766718 hasConcept C119857082 @default.
- W2775766718 hasConcept C124101348 @default.
- W2775766718 hasConcept C126838900 @default.
- W2775766718 hasConcept C12713177 @default.
- W2775766718 hasConcept C127313418 @default.
- W2775766718 hasConcept C146588470 @default.
- W2775766718 hasConcept C151730666 @default.
- W2775766718 hasConcept C153180895 @default.
- W2775766718 hasConcept C154945302 @default.
- W2775766718 hasConcept C177212765 @default.
- W2775766718 hasConcept C183115368 @default.
- W2775766718 hasConcept C2781294565 @default.
- W2775766718 hasConcept C41008148 @default.
- W2775766718 hasConcept C71924100 @default.
- W2775766718 hasConcept C77088390 @default.
- W2775766718 hasConcept C8038995 @default.
- W2775766718 hasConcept C8058405 @default.
- W2775766718 hasConcept C81917197 @default.
- W2775766718 hasConcept C98045186 @default.
- W2775766718 hasConceptScore W2775766718C109007969 @default.
- W2775766718 hasConceptScore W2775766718C111919701 @default.
- W2775766718 hasConceptScore W2775766718C119857082 @default.
- W2775766718 hasConceptScore W2775766718C124101348 @default.
- W2775766718 hasConceptScore W2775766718C126838900 @default.
- W2775766718 hasConceptScore W2775766718C12713177 @default.
- W2775766718 hasConceptScore W2775766718C127313418 @default.
- W2775766718 hasConceptScore W2775766718C146588470 @default.
- W2775766718 hasConceptScore W2775766718C151730666 @default.
- W2775766718 hasConceptScore W2775766718C153180895 @default.
- W2775766718 hasConceptScore W2775766718C154945302 @default.
- W2775766718 hasConceptScore W2775766718C177212765 @default.
- W2775766718 hasConceptScore W2775766718C183115368 @default.
- W2775766718 hasConceptScore W2775766718C2781294565 @default.
- W2775766718 hasConceptScore W2775766718C41008148 @default.
- W2775766718 hasConceptScore W2775766718C71924100 @default.
- W2775766718 hasConceptScore W2775766718C77088390 @default.