Matches in SemOpenAlex for { <https://semopenalex.org/work/W2775797427> ?p ?o ?g. }
- W2775797427 endingPage "2001" @default.
- W2775797427 startingPage "2001" @default.
- W2775797427 abstract "As a kind of clean and renewable energy, wind power is winning more and more attention across the world. Regarding wind power utilization, safety is a core concern and such concern has led to many studies on predicting wind speed. To obtain a more accurate prediction of the wind speed, this paper adopts a new hybrid forecasting model, combing empirical mode decomposition (EMD) and the general regression neural network (GRNN) optimized by the fruit fly optimization algorithm (FOA). In this new model, the original wind speed series are first decomposed into a collection of intrinsic mode functions (IMFs) and a residue. Next, the inherent relationship (partial correlation) of the datasets is analyzed, and the results are then used to select the input for the forecasting model. Finally, the GRNN with the FOA to optimize the smoothing factor is used to predict each sub-series. The mean absolute percentage error of the forecasting results in two cases are respectively 8.95% and 9.87%, suggesting that the hybrid approach outperforms the compared models, which provides guidance for future wind speed forecasting." @default.
- W2775797427 created "2017-12-22" @default.
- W2775797427 creator A5001888021 @default.
- W2775797427 creator A5039263367 @default.
- W2775797427 creator A5084939124 @default.
- W2775797427 date "2017-12-01" @default.
- W2775797427 modified "2023-09-27" @default.
- W2775797427 title "Wind Speed Forecasting Based on EMD and GRNN Optimized by FOA" @default.
- W2775797427 cites W1024003010 @default.
- W2775797427 cites W1514832573 @default.
- W2775797427 cites W1547525424 @default.
- W2775797427 cites W1705374184 @default.
- W2775797427 cites W1871376293 @default.
- W2775797427 cites W1901537671 @default.
- W2775797427 cites W1966499742 @default.
- W2775797427 cites W1968442252 @default.
- W2775797427 cites W1968679572 @default.
- W2775797427 cites W1975783225 @default.
- W2775797427 cites W1977205440 @default.
- W2775797427 cites W1980067289 @default.
- W2775797427 cites W1980477020 @default.
- W2775797427 cites W1989130706 @default.
- W2775797427 cites W1995140642 @default.
- W2775797427 cites W2005324096 @default.
- W2775797427 cites W2007221293 @default.
- W2775797427 cites W2011666252 @default.
- W2775797427 cites W2021826571 @default.
- W2775797427 cites W2022912953 @default.
- W2775797427 cites W2027486666 @default.
- W2775797427 cites W2027753389 @default.
- W2775797427 cites W2033852689 @default.
- W2775797427 cites W2052059781 @default.
- W2775797427 cites W2067656095 @default.
- W2775797427 cites W2070960910 @default.
- W2775797427 cites W2071519036 @default.
- W2775797427 cites W2073004501 @default.
- W2775797427 cites W2074715647 @default.
- W2775797427 cites W2079631764 @default.
- W2775797427 cites W2089217930 @default.
- W2775797427 cites W2093195672 @default.
- W2775797427 cites W2095471434 @default.
- W2775797427 cites W2098076249 @default.
- W2775797427 cites W2149723649 @default.
- W2775797427 cites W2170800794 @default.
- W2775797427 cites W602833636 @default.
- W2775797427 doi "https://doi.org/10.3390/en10122001" @default.
- W2775797427 hasPublicationYear "2017" @default.
- W2775797427 type Work @default.
- W2775797427 sameAs 2775797427 @default.
- W2775797427 citedByCount "37" @default.
- W2775797427 countsByYear W27757974272018 @default.
- W2775797427 countsByYear W27757974272019 @default.
- W2775797427 countsByYear W27757974272020 @default.
- W2775797427 countsByYear W27757974272021 @default.
- W2775797427 countsByYear W27757974272022 @default.
- W2775797427 countsByYear W27757974272023 @default.
- W2775797427 crossrefType "journal-article" @default.
- W2775797427 hasAuthorship W2775797427A5001888021 @default.
- W2775797427 hasAuthorship W2775797427A5039263367 @default.
- W2775797427 hasAuthorship W2775797427A5084939124 @default.
- W2775797427 hasBestOaLocation W27757974271 @default.
- W2775797427 hasConcept C105795698 @default.
- W2775797427 hasConcept C111919701 @default.
- W2775797427 hasConcept C119599485 @default.
- W2775797427 hasConcept C119857082 @default.
- W2775797427 hasConcept C121332964 @default.
- W2775797427 hasConcept C124101348 @default.
- W2775797427 hasConcept C127413603 @default.
- W2775797427 hasConcept C139945424 @default.
- W2775797427 hasConcept C151406439 @default.
- W2775797427 hasConcept C153294291 @default.
- W2775797427 hasConcept C154945302 @default.
- W2775797427 hasConcept C161067210 @default.
- W2775797427 hasConcept C163258240 @default.
- W2775797427 hasConcept C186370098 @default.
- W2775797427 hasConcept C188573790 @default.
- W2775797427 hasConcept C205649164 @default.
- W2775797427 hasConcept C25570617 @default.
- W2775797427 hasConcept C2778952367 @default.
- W2775797427 hasConcept C2781084341 @default.
- W2775797427 hasConcept C31972630 @default.
- W2775797427 hasConcept C33923547 @default.
- W2775797427 hasConcept C3770464 @default.
- W2775797427 hasConcept C41008148 @default.
- W2775797427 hasConcept C48677424 @default.
- W2775797427 hasConcept C50644808 @default.
- W2775797427 hasConcept C58640448 @default.
- W2775797427 hasConcept C62520636 @default.
- W2775797427 hasConcept C78600449 @default.
- W2775797427 hasConcept C89227174 @default.
- W2775797427 hasConceptScore W2775797427C105795698 @default.
- W2775797427 hasConceptScore W2775797427C111919701 @default.
- W2775797427 hasConceptScore W2775797427C119599485 @default.
- W2775797427 hasConceptScore W2775797427C119857082 @default.
- W2775797427 hasConceptScore W2775797427C121332964 @default.
- W2775797427 hasConceptScore W2775797427C124101348 @default.
- W2775797427 hasConceptScore W2775797427C127413603 @default.
- W2775797427 hasConceptScore W2775797427C139945424 @default.