Matches in SemOpenAlex for { <https://semopenalex.org/work/W2775986429> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2775986429 endingPage "376" @default.
- W2775986429 startingPage "376" @default.
- W2775986429 abstract "Data Visualization as Documentary Form:The Murmur of Digital Magnitude Tess Takahashi (bio) In the last decade, data visualization has emerged as a form of documentary. While data visualization is not typically thought of as being in the same category as documentary film, these visually pleasing and often amusing depictions of data culled from the natural and human world pop up repeatedly on our web feeds, often over geographic maps of the world that are detached from their larger context. In other words, data visualization is a rhetorical form that visualizes a relationship between the material world and its particular form of representation. At a time when both documentary forms in the art world and popular feature-length documentaries have flourished, data visualizations have become increasingly popular and powerful forms of documentary. It goes without saying that data visualizations are primarily visual, not aural, representations. Rather than documentary cinema's authoritative voice-over or the voicings of authentic witness, data visualization is typically silent. Yet I argue that data visualization not only has a metaphorical voice, like the voice of documentary film, but also claims to represent the literal material voices of others, even if those voices are seen as inarticulate, unrecognizable, or impossible—the voice of Earth, for example. This essay [End Page 376] asks how we might figure the documentary voice of data visualization as a metaphorical form that speaks to the eye. Further, it asks what thinking sonically about data visualization might reveal about voice and documentary. At stake here is what becomes of material embodied voices as they are absorbed into the authoritative voice of what is now our most ubiquitous documentary form: the data visualization. Today, data visualizations often draw on a wealth of Big Data, which Steve Lohr has described as the rising flood of digital data from many sources, including the Web, biological and industrial sensors, video, e-mail and social network communications.1 In the face of the incomprehensible scale of Big Data, data visualizations present an image that squeezes data from the big world into the instant of a glance—decades of rising sea levels, one hundred years of increasing temperatures, the extinction of species after species—by drawing on a combination of numerical measurement and photographic evidence. The most common contemporary forms of data visualization are static maps or looping, bite-size gifs, but data visualization has a longer history of attempts to make enormous amounts of data graspable in a glance. This tradition includes the work of Scottish engineer William Playfair, who in the late 1700s created the bar chart, the pie chart, and the line graph—forms that, in the words of nineteenth-century civil engineer Charles Minard, can be used to speak to the eyes.2 At that time, the supposedly immediate form of communication offered by charts and graphs constituted visual breakthroughs, innovations that allowed people to see patterns in data that they would otherwise have missed if they just stared at long tables of numbers.3 In more recent history, from the 1980s through the early 2000s, MIT professor Edward Tufte's three influential books on data visualization have chronicled the numerous ways that we have envisioned information over past centuries, ranging from hand-drawn hatch marks over sailors' maps to suggest the turbulence of the wind to clunky, artifact-ridden digital clouds generated by 1990s computer software.4 Today in the age of Big Data, the sophistication of data visualization tools has grown by orders of magnitude, like the sheer volume of data in the world. If the amount of data generated from the beginning of recorded time to 2003 rings in at a measly five billion gigabytes, we now generate that amount every two days.5 How might what William Davies describes as the now default collection of Big Data change what we think of as a voice, and what counts as speech for data visualization as a documentary form?6 While data visualization allows the eye to take in large amounts of data in the space of a glance, the embodied human voice cannot [End Page 377] be taken into the ear at a glance. Steven Connor has described the space of..." @default.
- W2775986429 created "2018-01-05" @default.
- W2775986429 creator A5031282843 @default.
- W2775986429 date "2017-01-01" @default.
- W2775986429 modified "2023-10-17" @default.
- W2775986429 title "Data Visualization as Documentary Form: The Murmur of Digital Magnitude" @default.
- W2775986429 cites W1488111828 @default.
- W2775986429 cites W1523825873 @default.
- W2775986429 cites W1535044297 @default.
- W2775986429 cites W1567180744 @default.
- W2775986429 cites W1597304084 @default.
- W2775986429 cites W1997816453 @default.
- W2775986429 cites W2004597467 @default.
- W2775986429 cites W2054002828 @default.
- W2775986429 cites W2085999390 @default.
- W2775986429 cites W2126016958 @default.
- W2775986429 cites W2133414959 @default.
- W2775986429 cites W2166445532 @default.
- W2775986429 cites W2327525319 @default.
- W2775986429 cites W2467374427 @default.
- W2775986429 cites W2604991534 @default.
- W2775986429 cites W2610881169 @default.
- W2775986429 cites W2777514040 @default.
- W2775986429 cites W575821302 @default.
- W2775986429 cites W598608797 @default.
- W2775986429 cites W609026532 @default.
- W2775986429 cites W616665832 @default.
- W2775986429 cites W648603434 @default.
- W2775986429 doi "https://doi.org/10.13110/discourse.39.3.0376" @default.
- W2775986429 hasPublicationYear "2017" @default.
- W2775986429 type Work @default.
- W2775986429 sameAs 2775986429 @default.
- W2775986429 citedByCount "3" @default.
- W2775986429 countsByYear W27759864292017 @default.
- W2775986429 countsByYear W27759864292023 @default.
- W2775986429 crossrefType "journal-article" @default.
- W2775986429 hasAuthorship W2775986429A5031282843 @default.
- W2775986429 hasConcept C124952713 @default.
- W2775986429 hasConcept C142362112 @default.
- W2775986429 hasConcept C154945302 @default.
- W2775986429 hasConcept C166957645 @default.
- W2775986429 hasConcept C17744445 @default.
- W2775986429 hasConcept C192562157 @default.
- W2775986429 hasConcept C199360897 @default.
- W2775986429 hasConcept C199539241 @default.
- W2775986429 hasConcept C2776359362 @default.
- W2775986429 hasConcept C2776900844 @default.
- W2775986429 hasConcept C2779343474 @default.
- W2775986429 hasConcept C36464697 @default.
- W2775986429 hasConcept C41008148 @default.
- W2775986429 hasConcept C94625758 @default.
- W2775986429 hasConcept C95457728 @default.
- W2775986429 hasConceptScore W2775986429C124952713 @default.
- W2775986429 hasConceptScore W2775986429C142362112 @default.
- W2775986429 hasConceptScore W2775986429C154945302 @default.
- W2775986429 hasConceptScore W2775986429C166957645 @default.
- W2775986429 hasConceptScore W2775986429C17744445 @default.
- W2775986429 hasConceptScore W2775986429C192562157 @default.
- W2775986429 hasConceptScore W2775986429C199360897 @default.
- W2775986429 hasConceptScore W2775986429C199539241 @default.
- W2775986429 hasConceptScore W2775986429C2776359362 @default.
- W2775986429 hasConceptScore W2775986429C2776900844 @default.
- W2775986429 hasConceptScore W2775986429C2779343474 @default.
- W2775986429 hasConceptScore W2775986429C36464697 @default.
- W2775986429 hasConceptScore W2775986429C41008148 @default.
- W2775986429 hasConceptScore W2775986429C94625758 @default.
- W2775986429 hasConceptScore W2775986429C95457728 @default.
- W2775986429 hasIssue "3" @default.
- W2775986429 hasLocation W27759864291 @default.
- W2775986429 hasOpenAccess W2775986429 @default.
- W2775986429 hasPrimaryLocation W27759864291 @default.
- W2775986429 hasRelatedWork W1549289070 @default.
- W2775986429 hasRelatedWork W1582096518 @default.
- W2775986429 hasRelatedWork W2020980144 @default.
- W2775986429 hasRelatedWork W2363669182 @default.
- W2775986429 hasRelatedWork W2525150146 @default.
- W2775986429 hasRelatedWork W2964278741 @default.
- W2775986429 hasRelatedWork W307513539 @default.
- W2775986429 hasRelatedWork W3152300908 @default.
- W2775986429 hasRelatedWork W1549056443 @default.
- W2775986429 hasRelatedWork W3097993346 @default.
- W2775986429 hasVolume "39" @default.
- W2775986429 isParatext "false" @default.
- W2775986429 isRetracted "false" @default.
- W2775986429 magId "2775986429" @default.
- W2775986429 workType "article" @default.