Matches in SemOpenAlex for { <https://semopenalex.org/work/W2776176876> ?p ?o ?g. }
- W2776176876 abstract "Confounders can produce spurious associations between exposure and outcome in observational studies. For majority of epidemiologists, adjusting for confounders using logistic regression model is their habitual method, though it has some problems in accuracy and precision. It is, therefore, important to highlight the problems of logistic regression and search the alternative method.Four causal diagram models were defined to summarize confounding equivalence. Both theoretical proofs and simulation studies were performed to verify whether conditioning on different confounding equivalence sets had the same bias-reducing potential and then to select the optimum adjusting strategy, in which logistic regression model and inverse probability weighting based marginal structural model (IPW-based-MSM) were compared. The do-calculus was used to calculate the true causal effect of exposure on outcome, then the bias and standard error were used to evaluate the performances of different strategies.Adjusting for different sets of confounding equivalence, as judged by identical Markov boundaries, produced different bias-reducing potential in the logistic regression model. For the sets satisfied G-admissibility, adjusting for the set including all the confounders reduced the equivalent bias to the one containing the parent nodes of the outcome, while the bias after adjusting for the parent nodes of exposure was not equivalent to them. In addition, all causal effect estimations through logistic regression were biased, although the estimation after adjusting for the parent nodes of exposure was nearest to the true causal effect. However, conditioning on different confounding equivalence sets had the same bias-reducing potential under IPW-based-MSM. Compared with logistic regression, the IPW-based-MSM could obtain unbiased causal effect estimation when the adjusted confounders satisfied G-admissibility and the optimal strategy was to adjust for the parent nodes of outcome, which obtained the highest precision.All adjustment strategies through logistic regression were biased for causal effect estimation, while IPW-based-MSM could always obtain unbiased estimation when the adjusted set satisfied G-admissibility. Thus, IPW-based-MSM was recommended to adjust for confounders set." @default.
- W2776176876 created "2018-01-05" @default.
- W2776176876 creator A5003441986 @default.
- W2776176876 creator A5008659449 @default.
- W2776176876 creator A5008684850 @default.
- W2776176876 creator A5019949771 @default.
- W2776176876 creator A5034068671 @default.
- W2776176876 creator A5051170599 @default.
- W2776176876 creator A5052596350 @default.
- W2776176876 creator A5079152026 @default.
- W2776176876 creator A5082886013 @default.
- W2776176876 date "2017-12-01" @default.
- W2776176876 modified "2023-10-18" @default.
- W2776176876 title "The alarming problems of confounding equivalence using logistic regression models in the perspective of causal diagrams" @default.
- W2776176876 cites W1752500127 @default.
- W2776176876 cites W1971226116 @default.
- W2776176876 cites W1975780287 @default.
- W2776176876 cites W1982535580 @default.
- W2776176876 cites W1993980658 @default.
- W2776176876 cites W1996016456 @default.
- W2776176876 cites W2008557562 @default.
- W2776176876 cites W2009187570 @default.
- W2776176876 cites W2028366245 @default.
- W2776176876 cites W2045908763 @default.
- W2776176876 cites W2062594082 @default.
- W2776176876 cites W2091580968 @default.
- W2776176876 cites W2091628208 @default.
- W2776176876 cites W2097413632 @default.
- W2776176876 cites W2100097418 @default.
- W2776176876 cites W2101771110 @default.
- W2776176876 cites W2109472209 @default.
- W2776176876 cites W2128305533 @default.
- W2776176876 cites W2128984831 @default.
- W2776176876 cites W2142495742 @default.
- W2776176876 cites W2143117649 @default.
- W2776176876 cites W2147646215 @default.
- W2776176876 cites W2155304757 @default.
- W2776176876 cites W2164826904 @default.
- W2776176876 cites W2513549274 @default.
- W2776176876 cites W2612469622 @default.
- W2776176876 cites W2723269127 @default.
- W2776176876 cites W2739073641 @default.
- W2776176876 cites W3121415235 @default.
- W2776176876 cites W949098010 @default.
- W2776176876 cites W2944071766 @default.
- W2776176876 doi "https://doi.org/10.1186/s12874-017-0449-7" @default.
- W2776176876 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5745640" @default.
- W2776176876 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29281984" @default.
- W2776176876 hasPublicationYear "2017" @default.
- W2776176876 type Work @default.
- W2776176876 sameAs 2776176876 @default.
- W2776176876 citedByCount "2" @default.
- W2776176876 countsByYear W27761768762018 @default.
- W2776176876 countsByYear W27761768762021 @default.
- W2776176876 crossrefType "journal-article" @default.
- W2776176876 hasAuthorship W2776176876A5003441986 @default.
- W2776176876 hasAuthorship W2776176876A5008659449 @default.
- W2776176876 hasAuthorship W2776176876A5008684850 @default.
- W2776176876 hasAuthorship W2776176876A5019949771 @default.
- W2776176876 hasAuthorship W2776176876A5034068671 @default.
- W2776176876 hasAuthorship W2776176876A5051170599 @default.
- W2776176876 hasAuthorship W2776176876A5052596350 @default.
- W2776176876 hasAuthorship W2776176876A5079152026 @default.
- W2776176876 hasAuthorship W2776176876A5082886013 @default.
- W2776176876 hasBestOaLocation W27761768761 @default.
- W2776176876 hasConcept C105795698 @default.
- W2776176876 hasConcept C118615104 @default.
- W2776176876 hasConcept C149782125 @default.
- W2776176876 hasConcept C151956035 @default.
- W2776176876 hasConcept C185429906 @default.
- W2776176876 hasConcept C23131810 @default.
- W2776176876 hasConcept C2779915747 @default.
- W2776176876 hasConcept C2780069185 @default.
- W2776176876 hasConcept C33923547 @default.
- W2776176876 hasConcept C77350462 @default.
- W2776176876 hasConceptScore W2776176876C105795698 @default.
- W2776176876 hasConceptScore W2776176876C118615104 @default.
- W2776176876 hasConceptScore W2776176876C149782125 @default.
- W2776176876 hasConceptScore W2776176876C151956035 @default.
- W2776176876 hasConceptScore W2776176876C185429906 @default.
- W2776176876 hasConceptScore W2776176876C23131810 @default.
- W2776176876 hasConceptScore W2776176876C2779915747 @default.
- W2776176876 hasConceptScore W2776176876C2780069185 @default.
- W2776176876 hasConceptScore W2776176876C33923547 @default.
- W2776176876 hasConceptScore W2776176876C77350462 @default.
- W2776176876 hasFunder F4320321001 @default.
- W2776176876 hasLocation W27761768761 @default.
- W2776176876 hasLocation W27761768762 @default.
- W2776176876 hasLocation W27761768763 @default.
- W2776176876 hasLocation W27761768764 @default.
- W2776176876 hasOpenAccess W2776176876 @default.
- W2776176876 hasPrimaryLocation W27761768761 @default.
- W2776176876 hasRelatedWork W1555222380 @default.
- W2776176876 hasRelatedWork W2029375786 @default.
- W2776176876 hasRelatedWork W2082311468 @default.
- W2776176876 hasRelatedWork W2099381590 @default.
- W2776176876 hasRelatedWork W2337449242 @default.
- W2776176876 hasRelatedWork W2417169073 @default.
- W2776176876 hasRelatedWork W2509600515 @default.
- W2776176876 hasRelatedWork W2967878627 @default.