Matches in SemOpenAlex for { <https://semopenalex.org/work/W2776221567> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2776221567 endingPage "228" @default.
- W2776221567 startingPage "221" @default.
- W2776221567 abstract "While a vast amount of applications and services are based on the Global Navigation Satellite System (GNSS), GNSS needs to deal with jamming, and how to carry out spoofing jamming recognition is the key of achieving high accuracy performance. In this paper, we apply machine learning approaches to GNSS spoofing jamming recognition. In particular, first, we investigate the scheme by employing the classical isometric mapping (ISOMAP) and Laplacian Eigen mapping (LE) algorithm to extract intrinsic feature vector for classification recognition from the original high-dimensional data. Next, we compare this scheme to another two feature vector extraction algorithms developed from principal component analysis (PCA), wavelet transform and singular value decomposition (WT-SVD). Finally, we consider the recognition rates of the four algorithms based on the support vector machine (SVM) classifier, and the effectiveness and the robustness of our scheme are verified via simulations." @default.
- W2776221567 created "2018-01-05" @default.
- W2776221567 creator A5019391901 @default.
- W2776221567 creator A5026912956 @default.
- W2776221567 creator A5050158111 @default.
- W2776221567 creator A5051053420 @default.
- W2776221567 date "2017-12-19" @default.
- W2776221567 modified "2023-09-28" @default.
- W2776221567 title "GNSS Spoofing Jamming Recognition Based on Machine Learning" @default.
- W2776221567 cites W1979498263 @default.
- W2776221567 cites W1995123712 @default.
- W2776221567 cites W2010976935 @default.
- W2776221567 cites W2070689356 @default.
- W2776221567 cites W2159470227 @default.
- W2776221567 cites W2321508803 @default.
- W2776221567 cites W2523167936 @default.
- W2776221567 cites W2608238159 @default.
- W2776221567 cites W2670644461 @default.
- W2776221567 doi "https://doi.org/10.1007/978-981-10-7521-6_27" @default.
- W2776221567 hasPublicationYear "2017" @default.
- W2776221567 type Work @default.
- W2776221567 sameAs 2776221567 @default.
- W2776221567 citedByCount "2" @default.
- W2776221567 countsByYear W27762215672020 @default.
- W2776221567 countsByYear W27762215672023 @default.
- W2776221567 crossrefType "book-chapter" @default.
- W2776221567 hasAuthorship W2776221567A5019391901 @default.
- W2776221567 hasAuthorship W2776221567A5026912956 @default.
- W2776221567 hasAuthorship W2776221567A5050158111 @default.
- W2776221567 hasAuthorship W2776221567A5051053420 @default.
- W2776221567 hasConcept C104317684 @default.
- W2776221567 hasConcept C119857082 @default.
- W2776221567 hasConcept C121332964 @default.
- W2776221567 hasConcept C12267149 @default.
- W2776221567 hasConcept C14279187 @default.
- W2776221567 hasConcept C151876577 @default.
- W2776221567 hasConcept C153180895 @default.
- W2776221567 hasConcept C154945302 @default.
- W2776221567 hasConcept C167900197 @default.
- W2776221567 hasConcept C185592680 @default.
- W2776221567 hasConcept C22789450 @default.
- W2776221567 hasConcept C27438332 @default.
- W2776221567 hasConcept C2778626561 @default.
- W2776221567 hasConcept C2779079576 @default.
- W2776221567 hasConcept C31258907 @default.
- W2776221567 hasConcept C41008148 @default.
- W2776221567 hasConcept C52622490 @default.
- W2776221567 hasConcept C55493867 @default.
- W2776221567 hasConcept C60229501 @default.
- W2776221567 hasConcept C63479239 @default.
- W2776221567 hasConcept C70518039 @default.
- W2776221567 hasConcept C76155785 @default.
- W2776221567 hasConcept C97355855 @default.
- W2776221567 hasConceptScore W2776221567C104317684 @default.
- W2776221567 hasConceptScore W2776221567C119857082 @default.
- W2776221567 hasConceptScore W2776221567C121332964 @default.
- W2776221567 hasConceptScore W2776221567C12267149 @default.
- W2776221567 hasConceptScore W2776221567C14279187 @default.
- W2776221567 hasConceptScore W2776221567C151876577 @default.
- W2776221567 hasConceptScore W2776221567C153180895 @default.
- W2776221567 hasConceptScore W2776221567C154945302 @default.
- W2776221567 hasConceptScore W2776221567C167900197 @default.
- W2776221567 hasConceptScore W2776221567C185592680 @default.
- W2776221567 hasConceptScore W2776221567C22789450 @default.
- W2776221567 hasConceptScore W2776221567C27438332 @default.
- W2776221567 hasConceptScore W2776221567C2778626561 @default.
- W2776221567 hasConceptScore W2776221567C2779079576 @default.
- W2776221567 hasConceptScore W2776221567C31258907 @default.
- W2776221567 hasConceptScore W2776221567C41008148 @default.
- W2776221567 hasConceptScore W2776221567C52622490 @default.
- W2776221567 hasConceptScore W2776221567C55493867 @default.
- W2776221567 hasConceptScore W2776221567C60229501 @default.
- W2776221567 hasConceptScore W2776221567C63479239 @default.
- W2776221567 hasConceptScore W2776221567C70518039 @default.
- W2776221567 hasConceptScore W2776221567C76155785 @default.
- W2776221567 hasConceptScore W2776221567C97355855 @default.
- W2776221567 hasLocation W27762215671 @default.
- W2776221567 hasOpenAccess W2776221567 @default.
- W2776221567 hasPrimaryLocation W27762215671 @default.
- W2776221567 hasRelatedWork W2080597906 @default.
- W2776221567 hasRelatedWork W2086010497 @default.
- W2776221567 hasRelatedWork W2334968816 @default.
- W2776221567 hasRelatedWork W2336974148 @default.
- W2776221567 hasRelatedWork W2794295008 @default.
- W2776221567 hasRelatedWork W2973105348 @default.
- W2776221567 hasRelatedWork W3130296859 @default.
- W2776221567 hasRelatedWork W4384695349 @default.
- W2776221567 hasRelatedWork W4386362486 @default.
- W2776221567 hasRelatedWork W2345184372 @default.
- W2776221567 isParatext "false" @default.
- W2776221567 isRetracted "false" @default.
- W2776221567 magId "2776221567" @default.
- W2776221567 workType "book-chapter" @default.