Matches in SemOpenAlex for { <https://semopenalex.org/work/W2776353950> ?p ?o ?g. }
- W2776353950 abstract "The smallest eigenvalues and the associated eigenvectors (i.e., eigenpairs) of a graph Laplacian matrix have been widely used in spectral clustering and community detection. However, in real-life applications the number of clusters or communities (say, $K$) is generally unknown a-priori. Consequently, the majority of the existing methods either choose $K$ heuristically or they repeat the clustering method with different choices of $K$ and accept the best clustering result. The first option, more often, yields suboptimal result, while the second option is computationally expensive. In this work, we propose an incremental method for constructing the eigenspectrum of the graph Laplacian matrix. This method leverages the eigenstructure of graph Laplacian matrix to obtain the $K$-th smallest eigenpair of the Laplacian matrix given a collection of all previously computed $K-1$ smallest eigenpairs. Our proposed method adapts the Laplacian matrix such that the batch eigenvalue decomposition problem transforms into an efficient sequential leading eigenpair computation problem. As a practical application, we consider user-guided spectral clustering. Specifically, we demonstrate that users can utilize the proposed incremental method for effective eigenpair computation and for determining the desired number of clusters based on multiple clustering metrics." @default.
- W2776353950 created "2018-01-05" @default.
- W2776353950 creator A5022097924 @default.
- W2776353950 creator A5044451399 @default.
- W2776353950 creator A5050344371 @default.
- W2776353950 date "2017-12-13" @default.
- W2776353950 modified "2023-09-24" @default.
- W2776353950 title "Incremental Eigenpair Computation for Graph Laplacian Matrices: Theory and Applications" @default.
- W2776353950 cites W1207633162 @default.
- W2776353950 cites W1513909467 @default.
- W2776353950 cites W1578099820 @default.
- W2776353950 cites W1647709314 @default.
- W2776353950 cites W1964217357 @default.
- W2776353950 cites W2000961858 @default.
- W2776353950 cites W2024224210 @default.
- W2776353950 cites W2024514015 @default.
- W2776353950 cites W2031842342 @default.
- W2776353950 cites W2076441874 @default.
- W2776353950 cites W2079316039 @default.
- W2776353950 cites W2091611291 @default.
- W2776353950 cites W2091656589 @default.
- W2776353950 cites W2097308346 @default.
- W2776353950 cites W2100078691 @default.
- W2776353950 cites W2101491865 @default.
- W2776353950 cites W2117686912 @default.
- W2776353950 cites W2119658593 @default.
- W2776353950 cites W2121947440 @default.
- W2776353950 cites W2132914434 @default.
- W2776353950 cites W2144267444 @default.
- W2776353950 cites W2152322845 @default.
- W2776353950 cites W2153839362 @default.
- W2776353950 cites W2158067767 @default.
- W2776353950 cites W2160643434 @default.
- W2776353950 cites W2165874743 @default.
- W2776353950 cites W2197112176 @default.
- W2776353950 cites W2294954946 @default.
- W2776353950 cites W2335903657 @default.
- W2776353950 cites W2393444374 @default.
- W2776353950 cites W2409026712 @default.
- W2776353950 cites W2461837903 @default.
- W2776353950 cites W255556494 @default.
- W2776353950 cites W2607045744 @default.
- W2776353950 cites W2610857016 @default.
- W2776353950 cites W2755176770 @default.
- W2776353950 cites W2755774368 @default.
- W2776353950 cites W2767518867 @default.
- W2776353950 cites W2768375068 @default.
- W2776353950 cites W2963382956 @default.
- W2776353950 cites W2963655370 @default.
- W2776353950 cites W2964211259 @default.
- W2776353950 cites W3098912714 @default.
- W2776353950 cites W97594948 @default.
- W2776353950 cites W985544890 @default.
- W2776353950 cites W2129195182 @default.
- W2776353950 doi "https://doi.org/10.48550/arxiv.1801.08196" @default.
- W2776353950 hasPublicationYear "2017" @default.
- W2776353950 type Work @default.
- W2776353950 sameAs 2776353950 @default.
- W2776353950 citedByCount "0" @default.
- W2776353950 crossrefType "posted-content" @default.
- W2776353950 hasAuthorship W2776353950A5022097924 @default.
- W2776353950 hasAuthorship W2776353950A5044451399 @default.
- W2776353950 hasAuthorship W2776353950A5050344371 @default.
- W2776353950 hasBestOaLocation W27763539501 @default.
- W2776353950 hasConcept C105611402 @default.
- W2776353950 hasConcept C106487976 @default.
- W2776353950 hasConcept C111472728 @default.
- W2776353950 hasConcept C11413529 @default.
- W2776353950 hasConcept C114614502 @default.
- W2776353950 hasConcept C115178988 @default.
- W2776353950 hasConcept C121332964 @default.
- W2776353950 hasConcept C132525143 @default.
- W2776353950 hasConcept C134306372 @default.
- W2776353950 hasConcept C138885662 @default.
- W2776353950 hasConcept C154945302 @default.
- W2776353950 hasConcept C158693339 @default.
- W2776353950 hasConcept C159985019 @default.
- W2776353950 hasConcept C165700671 @default.
- W2776353950 hasConcept C169756996 @default.
- W2776353950 hasConcept C192562407 @default.
- W2776353950 hasConcept C203776342 @default.
- W2776353950 hasConcept C22149727 @default.
- W2776353950 hasConcept C33923547 @default.
- W2776353950 hasConcept C41008148 @default.
- W2776353950 hasConcept C45374587 @default.
- W2776353950 hasConcept C62520636 @default.
- W2776353950 hasConcept C73555534 @default.
- W2776353950 hasConcept C74003402 @default.
- W2776353950 hasConcept C75553542 @default.
- W2776353950 hasConcept C80444323 @default.
- W2776353950 hasConceptScore W2776353950C105611402 @default.
- W2776353950 hasConceptScore W2776353950C106487976 @default.
- W2776353950 hasConceptScore W2776353950C111472728 @default.
- W2776353950 hasConceptScore W2776353950C11413529 @default.
- W2776353950 hasConceptScore W2776353950C114614502 @default.
- W2776353950 hasConceptScore W2776353950C115178988 @default.
- W2776353950 hasConceptScore W2776353950C121332964 @default.
- W2776353950 hasConceptScore W2776353950C132525143 @default.
- W2776353950 hasConceptScore W2776353950C134306372 @default.
- W2776353950 hasConceptScore W2776353950C138885662 @default.