Matches in SemOpenAlex for { <https://semopenalex.org/work/W2776454016> ?p ?o ?g. }
- W2776454016 endingPage "111" @default.
- W2776454016 startingPage "88" @default.
- W2776454016 abstract "Abstract In the real world all events are connected. There is a hidden network of dependencies that governs behavior of natural processes. Without much argument it can be said that, of all the known data-structures, graphs are naturally suitable to model such information. But to learn to use graph data structure is a tedious job as most operations on graphs are computationally expensive, so exploring fast machine learning techniques for graph data has been an active area of research and a family of algorithms called kernel based approaches has been famous among researchers of the machine learning domain. With the help of support vector machines, kernel based methods work very well for learning with Gaussian processes. In this survey we will explore various kernels that operate on graph representations. Starting from the basics of kernel based learning we will travel through the history of graph kernels from its first appearance to discussion of current state of the art techniques in practice." @default.
- W2776454016 created "2018-01-05" @default.
- W2776454016 creator A5018149093 @default.
- W2776454016 creator A5028531406 @default.
- W2776454016 creator A5037158329 @default.
- W2776454016 creator A5070947372 @default.
- W2776454016 creator A5085523573 @default.
- W2776454016 date "2018-02-01" @default.
- W2776454016 modified "2023-09-29" @default.
- W2776454016 title "The journey of graph kernels through two decades" @default.
- W2776454016 cites W1179283095 @default.
- W2776454016 cites W1505901931 @default.
- W2776454016 cites W1545231783 @default.
- W2776454016 cites W1560626952 @default.
- W2776454016 cites W1911647372 @default.
- W2776454016 cites W1975844474 @default.
- W2776454016 cites W1983203670 @default.
- W2776454016 cites W1985104873 @default.
- W2776454016 cites W1986280275 @default.
- W2776454016 cites W2008857988 @default.
- W2776454016 cites W2012459404 @default.
- W2776454016 cites W2017091502 @default.
- W2776454016 cites W2025733398 @default.
- W2776454016 cites W2026625220 @default.
- W2776454016 cites W2039444222 @default.
- W2776454016 cites W2051658231 @default.
- W2776454016 cites W2055298722 @default.
- W2776454016 cites W2056562706 @default.
- W2776454016 cites W2061344791 @default.
- W2776454016 cites W2071910845 @default.
- W2776454016 cites W2076063813 @default.
- W2776454016 cites W2097827365 @default.
- W2776454016 cites W2098223336 @default.
- W2776454016 cites W2101286420 @default.
- W2776454016 cites W2109294083 @default.
- W2776454016 cites W2115412287 @default.
- W2776454016 cites W2116007667 @default.
- W2776454016 cites W2117169652 @default.
- W2776454016 cites W2121102186 @default.
- W2776454016 cites W2121406124 @default.
- W2776454016 cites W2124228533 @default.
- W2776454016 cites W2130479394 @default.
- W2776454016 cites W2131479089 @default.
- W2776454016 cites W2132582966 @default.
- W2776454016 cites W2136507529 @default.
- W2776454016 cites W2141789735 @default.
- W2776454016 cites W2147286743 @default.
- W2776454016 cites W2154756203 @default.
- W2776454016 cites W2157523980 @default.
- W2776454016 cites W2159277216 @default.
- W2776454016 cites W2161723275 @default.
- W2776454016 cites W2312328781 @default.
- W2776454016 cites W2407879741 @default.
- W2776454016 cites W2492608700 @default.
- W2776454016 cites W3144386677 @default.
- W2776454016 cites W3144619878 @default.
- W2776454016 cites W3147254695 @default.
- W2776454016 doi "https://doi.org/10.1016/j.cosrev.2017.11.002" @default.
- W2776454016 hasPublicationYear "2018" @default.
- W2776454016 type Work @default.
- W2776454016 sameAs 2776454016 @default.
- W2776454016 citedByCount "80" @default.
- W2776454016 countsByYear W27764540162018 @default.
- W2776454016 countsByYear W27764540162019 @default.
- W2776454016 countsByYear W27764540162020 @default.
- W2776454016 countsByYear W27764540162021 @default.
- W2776454016 countsByYear W27764540162022 @default.
- W2776454016 countsByYear W27764540162023 @default.
- W2776454016 crossrefType "journal-article" @default.
- W2776454016 hasAuthorship W2776454016A5018149093 @default.
- W2776454016 hasAuthorship W2776454016A5028531406 @default.
- W2776454016 hasAuthorship W2776454016A5037158329 @default.
- W2776454016 hasAuthorship W2776454016A5070947372 @default.
- W2776454016 hasAuthorship W2776454016A5085523573 @default.
- W2776454016 hasConcept C132525143 @default.
- W2776454016 hasConcept C23123220 @default.
- W2776454016 hasConcept C41008148 @default.
- W2776454016 hasConcept C80444323 @default.
- W2776454016 hasConceptScore W2776454016C132525143 @default.
- W2776454016 hasConceptScore W2776454016C23123220 @default.
- W2776454016 hasConceptScore W2776454016C41008148 @default.
- W2776454016 hasConceptScore W2776454016C80444323 @default.
- W2776454016 hasFunder F4320334771 @default.
- W2776454016 hasLocation W27764540161 @default.
- W2776454016 hasOpenAccess W2776454016 @default.
- W2776454016 hasPrimaryLocation W27764540161 @default.
- W2776454016 hasRelatedWork W2103338134 @default.
- W2776454016 hasRelatedWork W2115485936 @default.
- W2776454016 hasRelatedWork W2119135658 @default.
- W2776454016 hasRelatedWork W2144190808 @default.
- W2776454016 hasRelatedWork W2153015554 @default.
- W2776454016 hasRelatedWork W2357241418 @default.
- W2776454016 hasRelatedWork W2366644548 @default.
- W2776454016 hasRelatedWork W2376314740 @default.
- W2776454016 hasRelatedWork W2384888906 @default.
- W2776454016 hasRelatedWork W3022131925 @default.
- W2776454016 hasVolume "27" @default.
- W2776454016 isParatext "false" @default.