Matches in SemOpenAlex for { <https://semopenalex.org/work/W2776476213> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2776476213 abstract "This paper studies density estimation under pointwise loss in the setting of contamination model. The goal is to estimate $f(x_0)$ at some $x_0inmathbb{R}$ with i.i.d. observations, $$ X_1,dots,X_nsim (1-epsilon)f+epsilon g, $$ where $g$ stands for a contamination distribution. In the context of multiple testing, this can be interpreted as estimating the null density at a point. We carefully study the effect of contamination on estimation through the following model indices: contamination proportion $epsilon$, smoothness of target density $beta_0$, smoothness of contamination density $beta_1$, and level of contamination $m$ at the point to be estimated, i.e. $g(x_0)leq m$. It is shown that the minimax rate with respect to the squared error loss is of order $$ [n^{-frac{2beta_0}{2beta_0+1}}]vee[epsilon^2(1wedge m)^2]vee[n^{-frac{2beta_1}{2beta_1+1}}epsilon^{frac{2}{2beta_1+1}}], $$ which characterizes the exact influence of contamination on the difficulty of the problem. We then establish the minimal cost of adaptation to contamination proportion, to smoothness and to both of the numbers. It is shown that some small price needs to be paid for adaptation in any of the three cases. Variations of Lepski's method are considered to achieve optimal adaptation. The problem is also studied when there is no smoothness assumption on the contamination distribution. This setting that allows for an arbitrary contamination distribution is recognized as Huber's $epsilon$-contamination model. The minimax rate is shown to be $$ [n^{-frac{2beta_0}{2beta_0+1}}]vee [epsilon^{frac{2beta_0}{beta_0+1}}]. $$ The adaptation theory is also different from the smooth contamination case. While adaptation to either contamination proportion or smoothness only costs a logarithmic factor, adaptation to both numbers is proved to be impossible." @default.
- W2776476213 created "2018-01-05" @default.
- W2776476213 creator A5054868126 @default.
- W2776476213 creator A5086236078 @default.
- W2776476213 date "2017-12-21" @default.
- W2776476213 modified "2023-09-23" @default.
- W2776476213 title "Density Estimation with Contaminated Data: Minimax Rates and Theory of Adaptation" @default.
- W2776476213 doi "https://doi.org/10.48550/arxiv.1712.07801" @default.
- W2776476213 hasPublicationYear "2017" @default.
- W2776476213 type Work @default.
- W2776476213 sameAs 2776476213 @default.
- W2776476213 citedByCount "0" @default.
- W2776476213 crossrefType "posted-content" @default.
- W2776476213 hasAuthorship W2776476213A5054868126 @default.
- W2776476213 hasAuthorship W2776476213A5086236078 @default.
- W2776476213 hasBestOaLocation W27764762131 @default.
- W2776476213 hasConcept C102634674 @default.
- W2776476213 hasConcept C105795698 @default.
- W2776476213 hasConcept C112570922 @default.
- W2776476213 hasConcept C114614502 @default.
- W2776476213 hasConcept C126255220 @default.
- W2776476213 hasConcept C134306372 @default.
- W2776476213 hasConcept C149728462 @default.
- W2776476213 hasConcept C151730666 @default.
- W2776476213 hasConcept C185429906 @default.
- W2776476213 hasConcept C18903297 @default.
- W2776476213 hasConcept C189508267 @default.
- W2776476213 hasConcept C199360897 @default.
- W2776476213 hasConcept C2776174256 @default.
- W2776476213 hasConcept C2777984123 @default.
- W2776476213 hasConcept C2779343474 @default.
- W2776476213 hasConcept C28826006 @default.
- W2776476213 hasConcept C33923547 @default.
- W2776476213 hasConcept C41008148 @default.
- W2776476213 hasConcept C86803240 @default.
- W2776476213 hasConceptScore W2776476213C102634674 @default.
- W2776476213 hasConceptScore W2776476213C105795698 @default.
- W2776476213 hasConceptScore W2776476213C112570922 @default.
- W2776476213 hasConceptScore W2776476213C114614502 @default.
- W2776476213 hasConceptScore W2776476213C126255220 @default.
- W2776476213 hasConceptScore W2776476213C134306372 @default.
- W2776476213 hasConceptScore W2776476213C149728462 @default.
- W2776476213 hasConceptScore W2776476213C151730666 @default.
- W2776476213 hasConceptScore W2776476213C185429906 @default.
- W2776476213 hasConceptScore W2776476213C18903297 @default.
- W2776476213 hasConceptScore W2776476213C189508267 @default.
- W2776476213 hasConceptScore W2776476213C199360897 @default.
- W2776476213 hasConceptScore W2776476213C2776174256 @default.
- W2776476213 hasConceptScore W2776476213C2777984123 @default.
- W2776476213 hasConceptScore W2776476213C2779343474 @default.
- W2776476213 hasConceptScore W2776476213C28826006 @default.
- W2776476213 hasConceptScore W2776476213C33923547 @default.
- W2776476213 hasConceptScore W2776476213C41008148 @default.
- W2776476213 hasConceptScore W2776476213C86803240 @default.
- W2776476213 hasLocation W27764762131 @default.
- W2776476213 hasOpenAccess W2776476213 @default.
- W2776476213 hasPrimaryLocation W27764762131 @default.
- W2776476213 hasRelatedWork W2035704650 @default.
- W2776476213 hasRelatedWork W2103605411 @default.
- W2776476213 hasRelatedWork W2233487150 @default.
- W2776476213 hasRelatedWork W2776476213 @default.
- W2776476213 hasRelatedWork W2978960053 @default.
- W2776476213 hasRelatedWork W3106006725 @default.
- W2776476213 hasRelatedWork W3125738251 @default.
- W2776476213 hasRelatedWork W3203222312 @default.
- W2776476213 hasRelatedWork W4254908450 @default.
- W2776476213 hasRelatedWork W4288013973 @default.
- W2776476213 isParatext "false" @default.
- W2776476213 isRetracted "false" @default.
- W2776476213 magId "2776476213" @default.
- W2776476213 workType "article" @default.