Matches in SemOpenAlex for { <https://semopenalex.org/work/W2776560107> ?p ?o ?g. }
- W2776560107 endingPage "51" @default.
- W2776560107 startingPage "39" @default.
- W2776560107 abstract "Latest technologies, for example, the Internet of Things (IoT), smart applications, smart grids and machine-to-machine networks, inspired the organization for self-sufficient large-scale wireless sensor networks (IoT-based-WSNs). Many IoT devices are powered by batteries with limited lifetime and deployed in remote areas. Thus in some situation, limited battery restricts the network lifetime. Scheduling is an effective approach for an energy efficient IoT-based-WSNs by categorizing the smart devices into an optimal number of disjoint subsets which completely cover all objects in the monitored area. Scheduling is an effective approach for an energy efficient IoT-based-WSNs by categorizing the smart devices into an optimal number of disjoint subsets which completely cover all objects in the monitored area. Finding the maximum number of such disjoint subsets is non-deterministic polynomial-complete. This paper proposes a hybrid artificial bee colony algorithm with an efficient schedule transformation, termed as HABCA-EST, to solve above problem. The unique feature of HABCA-EST is the rapid growth in the fitness function due to complete utilization of excessive information among the scheduled devices. The swarm and EST operations in HABCA-EST work together to efficiently search an optimal solution in less running time. We consider an application of sensing different objects in the monitored area, termed as target-coverage, to analyse the effectiveness of HABCA-EST. Results show that HABCA-EST takes less number of fitness evaluations (up to 10%) and schedules less number of smart devices (up to 94%) which leads to a reduction (93%) in simulation time as compared to the existing techniques." @default.
- W2776560107 created "2018-01-05" @default.
- W2776560107 creator A5028715246 @default.
- W2776560107 creator A5032487942 @default.
- W2776560107 creator A5033878374 @default.
- W2776560107 creator A5053277598 @default.
- W2776560107 date "2017-12-20" @default.
- W2776560107 modified "2023-10-17" @default.
- W2776560107 title "Hybrid Artificial Bee Colony Algorithm for an Energy Efficient Internet of Things based on Wireless Sensor Network" @default.
- W2776560107 cites W2033994630 @default.
- W2776560107 cites W2076901266 @default.
- W2776560107 cites W2105103777 @default.
- W2776560107 cites W2114652055 @default.
- W2776560107 cites W2134565781 @default.
- W2776560107 cites W2135053460 @default.
- W2776560107 cites W2138365125 @default.
- W2776560107 cites W2150794496 @default.
- W2776560107 cites W2168452204 @default.
- W2776560107 cites W2170239483 @default.
- W2776560107 cites W2298676361 @default.
- W2776560107 cites W2336784762 @default.
- W2776560107 cites W2398132253 @default.
- W2776560107 cites W2407994568 @default.
- W2776560107 cites W2417994021 @default.
- W2776560107 cites W2468623466 @default.
- W2776560107 cites W2571303926 @default.
- W2776560107 cites W2577854396 @default.
- W2776560107 cites W2605831024 @default.
- W2776560107 cites W2728851286 @default.
- W2776560107 doi "https://doi.org/10.1080/02564602.2017.1391136" @default.
- W2776560107 hasPublicationYear "2017" @default.
- W2776560107 type Work @default.
- W2776560107 sameAs 2776560107 @default.
- W2776560107 citedByCount "24" @default.
- W2776560107 countsByYear W27765601072018 @default.
- W2776560107 countsByYear W27765601072019 @default.
- W2776560107 countsByYear W27765601072020 @default.
- W2776560107 countsByYear W27765601072021 @default.
- W2776560107 countsByYear W27765601072022 @default.
- W2776560107 countsByYear W27765601072023 @default.
- W2776560107 crossrefType "journal-article" @default.
- W2776560107 hasAuthorship W2776560107A5028715246 @default.
- W2776560107 hasAuthorship W2776560107A5032487942 @default.
- W2776560107 hasAuthorship W2776560107A5033878374 @default.
- W2776560107 hasAuthorship W2776560107A5053277598 @default.
- W2776560107 hasBestOaLocation W27765601071 @default.
- W2776560107 hasConcept C111919701 @default.
- W2776560107 hasConcept C11413529 @default.
- W2776560107 hasConcept C114614502 @default.
- W2776560107 hasConcept C119857082 @default.
- W2776560107 hasConcept C120314980 @default.
- W2776560107 hasConcept C126255220 @default.
- W2776560107 hasConcept C149635348 @default.
- W2776560107 hasConcept C176066374 @default.
- W2776560107 hasConcept C206729178 @default.
- W2776560107 hasConcept C24590314 @default.
- W2776560107 hasConcept C31258907 @default.
- W2776560107 hasConcept C33923547 @default.
- W2776560107 hasConcept C41008148 @default.
- W2776560107 hasConcept C45340560 @default.
- W2776560107 hasConcept C68387754 @default.
- W2776560107 hasConcept C81860439 @default.
- W2776560107 hasConcept C8880873 @default.
- W2776560107 hasConceptScore W2776560107C111919701 @default.
- W2776560107 hasConceptScore W2776560107C11413529 @default.
- W2776560107 hasConceptScore W2776560107C114614502 @default.
- W2776560107 hasConceptScore W2776560107C119857082 @default.
- W2776560107 hasConceptScore W2776560107C120314980 @default.
- W2776560107 hasConceptScore W2776560107C126255220 @default.
- W2776560107 hasConceptScore W2776560107C149635348 @default.
- W2776560107 hasConceptScore W2776560107C176066374 @default.
- W2776560107 hasConceptScore W2776560107C206729178 @default.
- W2776560107 hasConceptScore W2776560107C24590314 @default.
- W2776560107 hasConceptScore W2776560107C31258907 @default.
- W2776560107 hasConceptScore W2776560107C33923547 @default.
- W2776560107 hasConceptScore W2776560107C41008148 @default.
- W2776560107 hasConceptScore W2776560107C45340560 @default.
- W2776560107 hasConceptScore W2776560107C68387754 @default.
- W2776560107 hasConceptScore W2776560107C81860439 @default.
- W2776560107 hasConceptScore W2776560107C8880873 @default.
- W2776560107 hasIssue "sup1" @default.
- W2776560107 hasLocation W27765601071 @default.
- W2776560107 hasOpenAccess W2776560107 @default.
- W2776560107 hasPrimaryLocation W27765601071 @default.
- W2776560107 hasRelatedWork W1971174658 @default.
- W2776560107 hasRelatedWork W2099195351 @default.
- W2776560107 hasRelatedWork W2171695875 @default.
- W2776560107 hasRelatedWork W2348092930 @default.
- W2776560107 hasRelatedWork W2625093826 @default.
- W2776560107 hasRelatedWork W2921026492 @default.
- W2776560107 hasRelatedWork W4256429076 @default.
- W2776560107 hasRelatedWork W4308716484 @default.
- W2776560107 hasRelatedWork W4311097251 @default.
- W2776560107 hasRelatedWork W4361251261 @default.
- W2776560107 hasVolume "34" @default.
- W2776560107 isParatext "false" @default.
- W2776560107 isRetracted "false" @default.
- W2776560107 magId "2776560107" @default.