Matches in SemOpenAlex for { <https://semopenalex.org/work/W2776567029> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2776567029 endingPage "155" @default.
- W2776567029 startingPage "139" @default.
- W2776567029 abstract "Steam-Assisted Gravity Drainage (SAGD) recovery is strongly impacted by distributions of heterogeneous shale barriers, which impede the vertical growth and lateral spread of a steam chamber and potentially reduce oil production. Conventional reservoir heterogeneities characterization workflows that entail updating static reservoir models with dynamic flow data are quite time-consuming. Furthermore, certain assumptions are often needed to approximate the complex physical processes. This study proposes a workflow integrating artificial intelligence (AI) in a model selection framework that aims to identify associated shale heterogeneities in SAGD reservoir based on extracted features from production time-series data. A series of SAGD models based on typical Athabasca oil reservoir properties and operating conditions is constructed. After constructing the base homogeneous model, the shale barriers are assigned randomly by sampling their location, lateral extent, and thickness from several probability distributions, which are inferred from field data assembled from the public domain. Sensitivity analysis is carried out to identify and analyze features in the production response that are related to shale characteristics: whenever the steam chamber encounters a shale barrier, a drop in the production is observed; this drop continues until the steam chamber has advanced past the shale barrier, and the production would rise again. Several types of input feature extraction methods are introduced in this work: piecewise linear approximation (PLA), cubic spline interpolation (CSI), and discrete wavelet transform (DWT). Next, artificial neural network (ANN) is constructed to calibrate a relationship between the retrieved production pattern parameters (inputs) and the corresponding geologic parameters describing shale heterogeneities (outputs), which include some variables capturing the location, orientation or size of a particular shale barrier encountered by the steam chamber. The final model is implemented in a novel characterization workflow to infer shale heterogeneities from production profiles. A number of realistic applications are presented to illustrate its utility. The ANN models are validated using numerous synthetic models, where the exact shale distributions are known. The trained ANN models can reliably estimate the relevant shale parameters and the associated uncertainties, while accurately predicting the corresponding production responses. It is intended to extend the proposed method to construct the ANN models directly from well logs and production data. This work presents a preliminary attempt in correlating stochastic shale parameters with observable features in production time-series data using AI techniques. The proposed method facilitates the selection of an ensemble of reservoir models that are consistent with the production history; these models can be subjected to further history-matching for a precise final match. The proposed methodology does not intend to replace traditional simulation and history-matching workflows, but it rather offers a complementary tool for extracting additional information from field data and incorporating AI-based models into practical reservoir modeling workflows." @default.
- W2776567029 created "2018-01-05" @default.
- W2776567029 creator A5018957484 @default.
- W2776567029 creator A5026169088 @default.
- W2776567029 creator A5090525883 @default.
- W2776567029 date "2018-04-01" @default.
- W2776567029 modified "2023-10-16" @default.
- W2776567029 title "Integration of artificial intelligence and production data analysis for shale heterogeneity characterization in steam-assisted gravity-drainage reservoirs" @default.
- W2776567029 cites W1966358121 @default.
- W2776567029 cites W1970352604 @default.
- W2776567029 cites W1975328492 @default.
- W2776567029 cites W1981070139 @default.
- W2776567029 cites W1987781552 @default.
- W2776567029 cites W2004601679 @default.
- W2776567029 cites W2008467806 @default.
- W2776567029 cites W2016813573 @default.
- W2776567029 cites W2020083112 @default.
- W2776567029 cites W2022658703 @default.
- W2776567029 cites W2067582691 @default.
- W2776567029 cites W2075479314 @default.
- W2776567029 cites W2079855895 @default.
- W2776567029 cites W2086899609 @default.
- W2776567029 cites W2102342419 @default.
- W2776567029 cites W2280471793 @default.
- W2776567029 cites W2483430316 @default.
- W2776567029 cites W2583087990 @default.
- W2776567029 cites W315916912 @default.
- W2776567029 cites W4230365988 @default.
- W2776567029 cites W438274752 @default.
- W2776567029 cites W4384625457 @default.
- W2776567029 doi "https://doi.org/10.1016/j.petrol.2017.12.046" @default.
- W2776567029 hasPublicationYear "2018" @default.
- W2776567029 type Work @default.
- W2776567029 sameAs 2776567029 @default.
- W2776567029 citedByCount "42" @default.
- W2776567029 countsByYear W27765670292018 @default.
- W2776567029 countsByYear W27765670292019 @default.
- W2776567029 countsByYear W27765670292020 @default.
- W2776567029 countsByYear W27765670292021 @default.
- W2776567029 countsByYear W27765670292022 @default.
- W2776567029 countsByYear W27765670292023 @default.
- W2776567029 crossrefType "journal-article" @default.
- W2776567029 hasAuthorship W2776567029A5018957484 @default.
- W2776567029 hasAuthorship W2776567029A5026169088 @default.
- W2776567029 hasAuthorship W2776567029A5090525883 @default.
- W2776567029 hasConcept C127313418 @default.
- W2776567029 hasConcept C131779963 @default.
- W2776567029 hasConcept C14641988 @default.
- W2776567029 hasConcept C151730666 @default.
- W2776567029 hasConcept C153127940 @default.
- W2776567029 hasConcept C159985019 @default.
- W2776567029 hasConcept C168056786 @default.
- W2776567029 hasConcept C192562407 @default.
- W2776567029 hasConcept C64768522 @default.
- W2776567029 hasConcept C78762247 @default.
- W2776567029 hasConceptScore W2776567029C127313418 @default.
- W2776567029 hasConceptScore W2776567029C131779963 @default.
- W2776567029 hasConceptScore W2776567029C14641988 @default.
- W2776567029 hasConceptScore W2776567029C151730666 @default.
- W2776567029 hasConceptScore W2776567029C153127940 @default.
- W2776567029 hasConceptScore W2776567029C159985019 @default.
- W2776567029 hasConceptScore W2776567029C168056786 @default.
- W2776567029 hasConceptScore W2776567029C192562407 @default.
- W2776567029 hasConceptScore W2776567029C64768522 @default.
- W2776567029 hasConceptScore W2776567029C78762247 @default.
- W2776567029 hasFunder F4320334593 @default.
- W2776567029 hasLocation W27765670291 @default.
- W2776567029 hasOpenAccess W2776567029 @default.
- W2776567029 hasPrimaryLocation W27765670291 @default.
- W2776567029 hasRelatedWork W1991070669 @default.
- W2776567029 hasRelatedWork W2030555176 @default.
- W2776567029 hasRelatedWork W2093109310 @default.
- W2776567029 hasRelatedWork W2312933609 @default.
- W2776567029 hasRelatedWork W2348135165 @default.
- W2776567029 hasRelatedWork W2793936937 @default.
- W2776567029 hasRelatedWork W4233520178 @default.
- W2776567029 hasRelatedWork W4237425135 @default.
- W2776567029 hasRelatedWork W4385608327 @default.
- W2776567029 hasRelatedWork W2121421956 @default.
- W2776567029 hasVolume "163" @default.
- W2776567029 isParatext "false" @default.
- W2776567029 isRetracted "false" @default.
- W2776567029 magId "2776567029" @default.
- W2776567029 workType "article" @default.