Matches in SemOpenAlex for { <https://semopenalex.org/work/W2776649056> ?p ?o ?g. }
- W2776649056 endingPage "57" @default.
- W2776649056 startingPage "47" @default.
- W2776649056 abstract "Abstract Iron redox cycling provides one of the most important energy sources supporting microorganisms in terrestrial hot springs. In order to understand microbial Fe(III) reduction processes in hot springs, Fe(III)-reducing bacterial consortia were successfully retrieved from seven acidic hot springs in Tengchong County, Yunnan Province, China (a temperature range from 40.6 °C to 74.7 °C and a pH range from 2.64 to 4.72). These Fe(III)-reducing consortia were mainly composed of sulfate reducing bacteria (SRB, including Desulfotomaculum, Thermodesulfobacterium and Desulfomicrobium) and organic matter fermenting bacteria (Thermoanaerobacterium and Thermoanaerobacter), with each consortia having specific composition depending on the physio-chemical conditions of the studied hot springs. The obtained consortia were capable of dissimilatory reduction of Fe(III) in nontronite NAu-2 (ferruginous smectite) with 20.8% to 29.8% reduction extent and initial reduction rate of 0.011–0.023 mM Fe(III)/g NAu-2/h. These extents and rates were comparable to those by mesophilic Fe-reducers in the presence of electron shuttles. Both high temperature and the possible presence of electron-shuttles in hot springs may have accounted for these observed high reduction extents and rates. Various secondary minerals formed during NAu-2 bioreduction, including Fe sulfides and oxides, silicates, and silica. In one spring, illitization and kaolinization of smectite were observed, suggesting that Fe-reducers play important roles in mineral transformation in geothermal environments." @default.
- W2776649056 created "2018-01-05" @default.
- W2776649056 creator A5045688795 @default.
- W2776649056 creator A5047989974 @default.
- W2776649056 creator A5065545489 @default.
- W2776649056 creator A5066607135 @default.
- W2776649056 creator A5066716873 @default.
- W2776649056 creator A5077068949 @default.
- W2776649056 creator A5087764481 @default.
- W2776649056 creator A5090555230 @default.
- W2776649056 date "2018-02-01" @default.
- W2776649056 modified "2023-10-17" @default.
- W2776649056 title "Reduction of structural Fe(III) in nontronite by thermophilic microbial consortia enriched from hot springs in Tengchong, Yunnan Province, China" @default.
- W2776649056 cites W1897475177 @default.
- W2776649056 cites W1914559929 @default.
- W2776649056 cites W1964658006 @default.
- W2776649056 cites W1970185448 @default.
- W2776649056 cites W1971092996 @default.
- W2776649056 cites W1979925653 @default.
- W2776649056 cites W1983728617 @default.
- W2776649056 cites W1988450664 @default.
- W2776649056 cites W1989401071 @default.
- W2776649056 cites W1992254810 @default.
- W2776649056 cites W1992522190 @default.
- W2776649056 cites W1996339982 @default.
- W2776649056 cites W1996972318 @default.
- W2776649056 cites W2000060983 @default.
- W2776649056 cites W2000330309 @default.
- W2776649056 cites W2000398883 @default.
- W2776649056 cites W2004840842 @default.
- W2776649056 cites W2007877613 @default.
- W2776649056 cites W2008115350 @default.
- W2776649056 cites W2009689313 @default.
- W2776649056 cites W2010983003 @default.
- W2776649056 cites W2011995833 @default.
- W2776649056 cites W2018977342 @default.
- W2776649056 cites W2020411400 @default.
- W2776649056 cites W2021162840 @default.
- W2776649056 cites W2026699540 @default.
- W2776649056 cites W2029471854 @default.
- W2776649056 cites W2030529666 @default.
- W2776649056 cites W2038228152 @default.
- W2776649056 cites W2042034278 @default.
- W2776649056 cites W2046605603 @default.
- W2776649056 cites W2049092556 @default.
- W2776649056 cites W2049909428 @default.
- W2776649056 cites W2050780574 @default.
- W2776649056 cites W2051082873 @default.
- W2776649056 cites W2053635551 @default.
- W2776649056 cites W2055064073 @default.
- W2776649056 cites W2059294660 @default.
- W2776649056 cites W2060718840 @default.
- W2776649056 cites W2068247723 @default.
- W2776649056 cites W2077688484 @default.
- W2776649056 cites W2079122251 @default.
- W2776649056 cites W2083412219 @default.
- W2776649056 cites W2087400926 @default.
- W2776649056 cites W2088282454 @default.
- W2776649056 cites W2090254002 @default.
- W2776649056 cites W2091797034 @default.
- W2776649056 cites W2092966445 @default.
- W2776649056 cites W2094659184 @default.
- W2776649056 cites W2099404867 @default.
- W2776649056 cites W2100838242 @default.
- W2776649056 cites W2105279255 @default.
- W2776649056 cites W2106036713 @default.
- W2776649056 cites W2118328068 @default.
- W2776649056 cites W2121242558 @default.
- W2776649056 cites W2123731620 @default.
- W2776649056 cites W2124372253 @default.
- W2776649056 cites W2125542552 @default.
- W2776649056 cites W2131006190 @default.
- W2776649056 cites W2132978247 @default.
- W2776649056 cites W2139647604 @default.
- W2776649056 cites W2154403829 @default.
- W2776649056 cites W2165888175 @default.
- W2776649056 cites W2166362645 @default.
- W2776649056 cites W2167768388 @default.
- W2776649056 cites W2314942182 @default.
- W2776649056 cites W2318750847 @default.
- W2776649056 cites W2320570189 @default.
- W2776649056 cites W2331422390 @default.
- W2776649056 cites W2415765689 @default.
- W2776649056 cites W2491126414 @default.
- W2776649056 cites W2578025108 @default.
- W2776649056 cites W2952018553 @default.
- W2776649056 cites W3173624724 @default.
- W2776649056 cites W4243015520 @default.
- W2776649056 doi "https://doi.org/10.1016/j.chemgeo.2017.12.028" @default.
- W2776649056 hasPublicationYear "2018" @default.
- W2776649056 type Work @default.
- W2776649056 sameAs 2776649056 @default.
- W2776649056 citedByCount "13" @default.
- W2776649056 countsByYear W27766490562019 @default.
- W2776649056 countsByYear W27766490562020 @default.
- W2776649056 countsByYear W27766490562021 @default.
- W2776649056 countsByYear W27766490562022 @default.
- W2776649056 countsByYear W27766490562023 @default.