Matches in SemOpenAlex for { <https://semopenalex.org/work/W2776803885> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2776803885 endingPage "553" @default.
- W2776803885 startingPage "547" @default.
- W2776803885 abstract "Sepsis is among the leading causes of morbidity, mortality, and cost overruns in critically ill patients. Early intervention with antibiotics improves survival in septic patients. However, no clinically validated system exists for real-time prediction of sepsis onset. We aimed to develop and validate an Artificial Intelligence Sepsis Expert algorithm for early prediction of sepsis.Observational cohort study.Academic medical center from January 2013 to December 2015.Over 31,000 admissions to the ICUs at two Emory University hospitals (development cohort), in addition to over 52,000 ICU patients from the publicly available Medical Information Mart for Intensive Care-III ICU database (validation cohort). Patients who met the Third International Consensus Definitions for Sepsis (Sepsis-3) prior to or within 4 hours of their ICU admission were excluded, resulting in roughly 27,000 and 42,000 patients within our development and validation cohorts, respectively.None.High-resolution vital signs time series and electronic medical record data were extracted. A set of 65 features (variables) were calculated on hourly basis and passed to the Artificial Intelligence Sepsis Expert algorithm to predict onset of sepsis in the proceeding T hours (where T = 12, 8, 6, or 4). Artificial Intelligence Sepsis Expert was used to predict onset of sepsis in the proceeding T hours and to produce a list of the most significant contributing factors. For the 12-, 8-, 6-, and 4-hour ahead prediction of sepsis, Artificial Intelligence Sepsis Expert achieved area under the receiver operating characteristic in the range of 0.83-0.85. Performance of the Artificial Intelligence Sepsis Expert on the development and validation cohorts was indistinguishable.Using data available in the ICU in real-time, Artificial Intelligence Sepsis Expert can accurately predict the onset of sepsis in an ICU patient 4-12 hours prior to clinical recognition. A prospective study is necessary to determine the clinical utility of the proposed sepsis prediction model." @default.
- W2776803885 created "2018-01-05" @default.
- W2776803885 creator A5006192037 @default.
- W2776803885 creator A5035729269 @default.
- W2776803885 creator A5037173326 @default.
- W2776803885 creator A5048842509 @default.
- W2776803885 creator A5069308227 @default.
- W2776803885 creator A5087048130 @default.
- W2776803885 date "2018-04-01" @default.
- W2776803885 modified "2023-10-17" @default.
- W2776803885 title "An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU" @default.
- W2776803885 cites W1768679997 @default.
- W2776803885 cites W18854425 @default.
- W2776803885 cites W1898928487 @default.
- W2776803885 cites W1943063538 @default.
- W2776803885 cites W1985675882 @default.
- W2776803885 cites W2012234991 @default.
- W2776803885 cites W2044853225 @default.
- W2776803885 cites W2049927822 @default.
- W2776803885 cites W2056554475 @default.
- W2776803885 cites W2079469487 @default.
- W2776803885 cites W2093266575 @default.
- W2776803885 cites W2121111947 @default.
- W2776803885 cites W2145577370 @default.
- W2776803885 cites W2145882348 @default.
- W2776803885 cites W2162181053 @default.
- W2776803885 cites W2171849573 @default.
- W2776803885 cites W2183670545 @default.
- W2776803885 cites W2280404143 @default.
- W2776803885 cites W2396881363 @default.
- W2776803885 cites W2514926717 @default.
- W2776803885 cites W2523834880 @default.
- W2776803885 cites W2567142519 @default.
- W2776803885 cites W2604972438 @default.
- W2776803885 cites W2614741637 @default.
- W2776803885 doi "https://doi.org/10.1097/ccm.0000000000002936" @default.
- W2776803885 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5851825" @default.
- W2776803885 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29286945" @default.
- W2776803885 hasPublicationYear "2018" @default.
- W2776803885 type Work @default.
- W2776803885 sameAs 2776803885 @default.
- W2776803885 citedByCount "467" @default.
- W2776803885 countsByYear W27768038852018 @default.
- W2776803885 countsByYear W27768038852019 @default.
- W2776803885 countsByYear W27768038852020 @default.
- W2776803885 countsByYear W27768038852021 @default.
- W2776803885 countsByYear W27768038852022 @default.
- W2776803885 countsByYear W27768038852023 @default.
- W2776803885 crossrefType "journal-article" @default.
- W2776803885 hasAuthorship W2776803885A5006192037 @default.
- W2776803885 hasAuthorship W2776803885A5035729269 @default.
- W2776803885 hasAuthorship W2776803885A5037173326 @default.
- W2776803885 hasAuthorship W2776803885A5048842509 @default.
- W2776803885 hasAuthorship W2776803885A5069308227 @default.
- W2776803885 hasAuthorship W2776803885A5087048130 @default.
- W2776803885 hasBestOaLocation W27768038852 @default.
- W2776803885 hasConcept C126322002 @default.
- W2776803885 hasConcept C177713679 @default.
- W2776803885 hasConcept C194828623 @default.
- W2776803885 hasConcept C195910791 @default.
- W2776803885 hasConcept C201903717 @default.
- W2776803885 hasConcept C2778384902 @default.
- W2776803885 hasConcept C2987404301 @default.
- W2776803885 hasConcept C71924100 @default.
- W2776803885 hasConcept C72563966 @default.
- W2776803885 hasConceptScore W2776803885C126322002 @default.
- W2776803885 hasConceptScore W2776803885C177713679 @default.
- W2776803885 hasConceptScore W2776803885C194828623 @default.
- W2776803885 hasConceptScore W2776803885C195910791 @default.
- W2776803885 hasConceptScore W2776803885C201903717 @default.
- W2776803885 hasConceptScore W2776803885C2778384902 @default.
- W2776803885 hasConceptScore W2776803885C2987404301 @default.
- W2776803885 hasConceptScore W2776803885C71924100 @default.
- W2776803885 hasConceptScore W2776803885C72563966 @default.
- W2776803885 hasIssue "4" @default.
- W2776803885 hasLocation W27768038851 @default.
- W2776803885 hasLocation W27768038852 @default.
- W2776803885 hasLocation W27768038853 @default.
- W2776803885 hasLocation W27768038854 @default.
- W2776803885 hasOpenAccess W2776803885 @default.
- W2776803885 hasPrimaryLocation W27768038851 @default.
- W2776803885 hasRelatedWork W2013824187 @default.
- W2776803885 hasRelatedWork W2028480152 @default.
- W2776803885 hasRelatedWork W2037284836 @default.
- W2776803885 hasRelatedWork W2122839746 @default.
- W2776803885 hasRelatedWork W2409143569 @default.
- W2776803885 hasRelatedWork W2419392824 @default.
- W2776803885 hasRelatedWork W2535849704 @default.
- W2776803885 hasRelatedWork W2740192781 @default.
- W2776803885 hasRelatedWork W2891850811 @default.
- W2776803885 hasRelatedWork W3216303256 @default.
- W2776803885 hasVolume "46" @default.
- W2776803885 isParatext "false" @default.
- W2776803885 isRetracted "false" @default.
- W2776803885 magId "2776803885" @default.
- W2776803885 workType "article" @default.