Matches in SemOpenAlex for { <https://semopenalex.org/work/W2777242551> ?p ?o ?g. }
- W2777242551 abstract "The benefits of well-informed water management systems are related to the forecasting skills of hydrological variables. These benefits can be reflected in reducing economic and social losses to come. Therefore, the optimal design of water management projects frequently involves finding the methods or techniques that generate long sequences of hydrological data. These sequences considered as time series can be used to analyze and optimize the performance of the project designed. In order to cover these requirements, this work presents a new model of the stochastic process applied in problems that involve phenomena of stochastic behavior and periodic characteristics. Two components were used, the first one, a type of recurrent neural network relatively recent introduced in the literature and conceptually simple called ESN (echo state network) as the deterministic component, an interesting feature of ESN is that from certain algebraic properties, training only the output of the network is often sufficient to achieve excellent performance in practical applications. The second part of the model incorporates the uncertainty associated with hydrological processes, the model is finally called ESN-RNN. This model was calibrated with time series of monthly discharge data from four different river basins of MOPEX data set. The performance of ESN-RNN is compared with two feedforward neural networks ANN-1, ANN-2 (with one and two past months respectively) and the Thomas-Fiering model. The results show that the ESN-RNN model provides a promising alternative for simulation purposes, with interesting potential in the context of hydrometeorological resources." @default.
- W2777242551 created "2018-01-05" @default.
- W2777242551 creator A5020223967 @default.
- W2777242551 creator A5031451522 @default.
- W2777242551 date "2017-09-01" @default.
- W2777242551 modified "2023-09-26" @default.
- W2777242551 title "Stochastic generation and forecasting of monthly hydrometeorological data based on non-traditional neural network" @default.
- W2777242551 cites W1519547529 @default.
- W2777242551 cites W1834484028 @default.
- W2777242551 cites W1850374449 @default.
- W2777242551 cites W1910625139 @default.
- W2777242551 cites W1974195979 @default.
- W2777242551 cites W1975579674 @default.
- W2777242551 cites W1982201779 @default.
- W2777242551 cites W1996940434 @default.
- W2777242551 cites W2016589492 @default.
- W2777242551 cites W2019207321 @default.
- W2777242551 cites W2057653135 @default.
- W2777242551 cites W2088579613 @default.
- W2777242551 cites W2110485445 @default.
- W2777242551 cites W2118706537 @default.
- W2777242551 cites W2121124177 @default.
- W2777242551 cites W2131047005 @default.
- W2777242551 cites W2144001972 @default.
- W2777242551 cites W2148161708 @default.
- W2777242551 cites W2167063264 @default.
- W2777242551 cites W2169728932 @default.
- W2777242551 cites W2171865010 @default.
- W2777242551 cites W2171997072 @default.
- W2777242551 cites W2172065119 @default.
- W2777242551 cites W2252143850 @default.
- W2777242551 cites W2265012898 @default.
- W2777242551 cites W2890619897 @default.
- W2777242551 cites W3147862188 @default.
- W2777242551 cites W2114001875 @default.
- W2777242551 doi "https://doi.org/10.1109/clei.2017.8226387" @default.
- W2777242551 hasPublicationYear "2017" @default.
- W2777242551 type Work @default.
- W2777242551 sameAs 2777242551 @default.
- W2777242551 citedByCount "0" @default.
- W2777242551 crossrefType "proceedings-article" @default.
- W2777242551 hasAuthorship W2777242551A5020223967 @default.
- W2777242551 hasAuthorship W2777242551A5031451522 @default.
- W2777242551 hasConcept C100725284 @default.
- W2777242551 hasConcept C107054158 @default.
- W2777242551 hasConcept C111919701 @default.
- W2777242551 hasConcept C119857082 @default.
- W2777242551 hasConcept C121332964 @default.
- W2777242551 hasConcept C127413603 @default.
- W2777242551 hasConcept C133731056 @default.
- W2777242551 hasConcept C138885662 @default.
- W2777242551 hasConcept C147168706 @default.
- W2777242551 hasConcept C151406439 @default.
- W2777242551 hasConcept C151730666 @default.
- W2777242551 hasConcept C153294291 @default.
- W2777242551 hasConcept C154945302 @default.
- W2777242551 hasConcept C172025690 @default.
- W2777242551 hasConcept C2776401178 @default.
- W2777242551 hasConcept C2779343474 @default.
- W2777242551 hasConcept C38858127 @default.
- W2777242551 hasConcept C41008148 @default.
- W2777242551 hasConcept C41895202 @default.
- W2777242551 hasConcept C47702885 @default.
- W2777242551 hasConcept C50644808 @default.
- W2777242551 hasConcept C86803240 @default.
- W2777242551 hasConcept C98045186 @default.
- W2777242551 hasConceptScore W2777242551C100725284 @default.
- W2777242551 hasConceptScore W2777242551C107054158 @default.
- W2777242551 hasConceptScore W2777242551C111919701 @default.
- W2777242551 hasConceptScore W2777242551C119857082 @default.
- W2777242551 hasConceptScore W2777242551C121332964 @default.
- W2777242551 hasConceptScore W2777242551C127413603 @default.
- W2777242551 hasConceptScore W2777242551C133731056 @default.
- W2777242551 hasConceptScore W2777242551C138885662 @default.
- W2777242551 hasConceptScore W2777242551C147168706 @default.
- W2777242551 hasConceptScore W2777242551C151406439 @default.
- W2777242551 hasConceptScore W2777242551C151730666 @default.
- W2777242551 hasConceptScore W2777242551C153294291 @default.
- W2777242551 hasConceptScore W2777242551C154945302 @default.
- W2777242551 hasConceptScore W2777242551C172025690 @default.
- W2777242551 hasConceptScore W2777242551C2776401178 @default.
- W2777242551 hasConceptScore W2777242551C2779343474 @default.
- W2777242551 hasConceptScore W2777242551C38858127 @default.
- W2777242551 hasConceptScore W2777242551C41008148 @default.
- W2777242551 hasConceptScore W2777242551C41895202 @default.
- W2777242551 hasConceptScore W2777242551C47702885 @default.
- W2777242551 hasConceptScore W2777242551C50644808 @default.
- W2777242551 hasConceptScore W2777242551C86803240 @default.
- W2777242551 hasConceptScore W2777242551C98045186 @default.
- W2777242551 hasLocation W27772425511 @default.
- W2777242551 hasOpenAccess W2777242551 @default.
- W2777242551 hasPrimaryLocation W27772425511 @default.
- W2777242551 hasRelatedWork W1573559779 @default.
- W2777242551 hasRelatedWork W1618102973 @default.
- W2777242551 hasRelatedWork W2044166507 @default.
- W2777242551 hasRelatedWork W2080690725 @default.
- W2777242551 hasRelatedWork W2088218958 @default.
- W2777242551 hasRelatedWork W2105154542 @default.
- W2777242551 hasRelatedWork W2170856142 @default.
- W2777242551 hasRelatedWork W2351725119 @default.