Matches in SemOpenAlex for { <https://semopenalex.org/work/W2777315026> ?p ?o ?g. }
- W2777315026 endingPage "23" @default.
- W2777315026 startingPage "14" @default.
- W2777315026 abstract "In the era of computer-assisted diagnostic tools for various brain diseases, Alzheimer's disease (AD) covers a large percentage of neuroimaging research, with the main scope being its use in daily practice. However, there has been no study attempting to simultaneously discriminate among Healthy Controls (HC), early mild cognitive impairment (MCI), late MCI (cMCI) and stable AD, using features derived from a single modality, namely MRI.Based on preprocessed MRI images from the organizers of a neuroimaging challenge,3 we attempted to quantify the prediction accuracy of multiple morphological MRI features to simultaneously discriminate among HC, MCI, cMCI and AD. We explored the efficacy of a novel scheme that includes multiple feature selections via Random Forest from subsets of the whole set of features (e.g. whole set, left/right hemisphere etc.), Random Forest classification using a fusion approach and ensemble classification via majority voting. From the ADNI database, 60 HC, 60 MCI, 60 cMCI and 60 CE were used as a training set with known labels. An extra dataset of 160 subjects (HC: 40, MCI: 40, cMCI: 40 and AD: 40) was used as an external blind validation dataset to evaluate the proposed machine learning scheme.In the second blind dataset, we succeeded in a four-class classification of 61.9% by combining MRI-based features with a Random Forest-based Ensemble Strategy. We achieved the best classification accuracy of all teams that participated in this neuroimaging competition.The results demonstrate the effectiveness of the proposed scheme to simultaneously discriminate among four groups using morphological MRI features for the very first time in the literature.Hence, the proposed machine learning scheme can be used to define single and multi-modal biomarkers for AD." @default.
- W2777315026 created "2018-01-05" @default.
- W2777315026 creator A5020999523 @default.
- W2777315026 creator A5062687221 @default.
- W2777315026 creator A5077755476 @default.
- W2777315026 date "2018-05-01" @default.
- W2777315026 modified "2023-10-17" @default.
- W2777315026 title "Random forest feature selection, fusion and ensemble strategy: Combining multiple morphological MRI measures to discriminate among healhy elderly, MCI, cMCI and alzheimer’s disease patients: From the alzheimer’s disease neuroimaging initiative (ADNI) database" @default.
- W2777315026 cites W1529527003 @default.
- W2777315026 cites W1715858500 @default.
- W2777315026 cites W1989217296 @default.
- W2777315026 cites W1994694505 @default.
- W2777315026 cites W2001648635 @default.
- W2777315026 cites W2005720379 @default.
- W2777315026 cites W2007847914 @default.
- W2777315026 cites W2012059337 @default.
- W2777315026 cites W2014418634 @default.
- W2777315026 cites W2035954132 @default.
- W2777315026 cites W2038003677 @default.
- W2777315026 cites W2038899746 @default.
- W2777315026 cites W2041677347 @default.
- W2777315026 cites W2044565580 @default.
- W2777315026 cites W2063757041 @default.
- W2777315026 cites W2079250118 @default.
- W2777315026 cites W2084443965 @default.
- W2777315026 cites W2087567887 @default.
- W2777315026 cites W2090537659 @default.
- W2777315026 cites W2093602450 @default.
- W2777315026 cites W2095649738 @default.
- W2777315026 cites W2095667420 @default.
- W2777315026 cites W2103717170 @default.
- W2777315026 cites W2125043543 @default.
- W2777315026 cites W2135011268 @default.
- W2777315026 cites W2137484827 @default.
- W2777315026 cites W2143017382 @default.
- W2777315026 cites W2145328419 @default.
- W2777315026 cites W2153171432 @default.
- W2777315026 cites W2158063156 @default.
- W2777315026 cites W2162798214 @default.
- W2777315026 cites W2165679544 @default.
- W2777315026 cites W2171380313 @default.
- W2777315026 cites W2223851414 @default.
- W2777315026 cites W2272468257 @default.
- W2777315026 cites W2281498324 @default.
- W2777315026 cites W2284191928 @default.
- W2777315026 cites W2291613166 @default.
- W2777315026 cites W2300754229 @default.
- W2777315026 cites W2324938769 @default.
- W2777315026 cites W2460653397 @default.
- W2777315026 cites W2510377512 @default.
- W2777315026 cites W2523104495 @default.
- W2777315026 cites W2535391591 @default.
- W2777315026 cites W2585885738 @default.
- W2777315026 cites W2590116164 @default.
- W2777315026 cites W2598992304 @default.
- W2777315026 cites W2603189778 @default.
- W2777315026 cites W2626513856 @default.
- W2777315026 cites W282373936 @default.
- W2777315026 cites W2911964244 @default.
- W2777315026 doi "https://doi.org/10.1016/j.jneumeth.2017.12.010" @default.
- W2777315026 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29269320" @default.
- W2777315026 hasPublicationYear "2018" @default.
- W2777315026 type Work @default.
- W2777315026 sameAs 2777315026 @default.
- W2777315026 citedByCount "102" @default.
- W2777315026 countsByYear W27773150262018 @default.
- W2777315026 countsByYear W27773150262019 @default.
- W2777315026 countsByYear W27773150262020 @default.
- W2777315026 countsByYear W27773150262021 @default.
- W2777315026 countsByYear W27773150262022 @default.
- W2777315026 countsByYear W27773150262023 @default.
- W2777315026 crossrefType "journal-article" @default.
- W2777315026 hasAuthorship W2777315026A5020999523 @default.
- W2777315026 hasAuthorship W2777315026A5062687221 @default.
- W2777315026 hasAuthorship W2777315026A5077755476 @default.
- W2777315026 hasBestOaLocation W27773150261 @default.
- W2777315026 hasConcept C119857082 @default.
- W2777315026 hasConcept C138885662 @default.
- W2777315026 hasConcept C148483581 @default.
- W2777315026 hasConcept C153180895 @default.
- W2777315026 hasConcept C153668964 @default.
- W2777315026 hasConcept C154945302 @default.
- W2777315026 hasConcept C15744967 @default.
- W2777315026 hasConcept C169258074 @default.
- W2777315026 hasConcept C169760540 @default.
- W2777315026 hasConcept C169900460 @default.
- W2777315026 hasConcept C177264268 @default.
- W2777315026 hasConcept C199360897 @default.
- W2777315026 hasConcept C2776401178 @default.
- W2777315026 hasConcept C2778373026 @default.
- W2777315026 hasConcept C2984915365 @default.
- W2777315026 hasConcept C41008148 @default.
- W2777315026 hasConcept C41895202 @default.
- W2777315026 hasConcept C45942800 @default.
- W2777315026 hasConcept C58693492 @default.
- W2777315026 hasConceptScore W2777315026C119857082 @default.
- W2777315026 hasConceptScore W2777315026C138885662 @default.
- W2777315026 hasConceptScore W2777315026C148483581 @default.