Matches in SemOpenAlex for { <https://semopenalex.org/work/W2777392906> ?p ?o ?g. }
- W2777392906 abstract "With the ubiquitous use of computers in controlling physical systems, it requires to have a new formalism that could model both continuous flows and discrete jumps. Hybrid systems are introduced to this purpose. A hybrid system, which is modeled by a hybrid automaton in the thesis, is equipped with finitely many discrete modes and continuous real-valued variables. A state of it is then represented by a mode along with a valuation of the variables. Given that the system is in a mode `, the variable values are changed continuously according to the Ordinary Differential Equation (ODE) associated to `, or discretely by a jump starting from `. The thesis focuses on the techniques to compute all reachable states over a bounded time horizon and finitely many jumps for a hybrid system with non-linear dynamics. The results of that can then be used in safety verification of the system. Although a great amount of work has been devoted to the reachability analysis of hybrid systems with linear dynamics, there are few effective approaches proposed for the non-linear case which is very often in applications. The difficulty is twofold. Firstly, it is not easy to find an over-approximation with acceptable accuracy for a set of the solutions of a non-linear ODE. Secondly, to detect and compute the reachable states under a jump requires solving non-linear real arithmetic problems which is also difficult in general. In the thesis, we present our approaches to deal with the above difficulties. For the first one, we present the use of Taylor models as the over-approximate representations for nonlinear ODE solutions. Our work can be viewed as a variant of the Taylor model method proposed by Berz et al., such that we are able to efficiently deal with some examples with more than 10 variables. Besides, we also extend the work of Lin and Stadtherr to handle the ODEs with bounded time-varying parameters. For the second difficulty, we present two techniques: (a) domain contraction and (b) range over-approximation to compute an enclosure for the reachable set from which a jump is enabled. They can be seen as Satisfiability Modulo Theories (SMT) solving algorithms which are specialized for the reachability analysis of hybrid systems. In order to reduce the computational cost, we also propose different heuristics for aggregating Taylor models. Besides the above contributions, we describe a method to fast generate Taylor model over-approximations for linear ODE solutions. Its performance is demonstrated via a comparison with the tool SpaceEx. To make our methods accessible by other people, we implement them in a tool named Flow*. To examine the effectiveness, we thoroughly compare it with some related tools which are popularly used, according to their functionalities, over a set of non-trivial benchmarks that are collected by us from the areas of mechanics, biology, electronic engineering and medicine. From the experimental results, the advantage of Flow* over the other tools becomes more apparent when the scale of the system grows. On the other hand, it" @default.
- W2777392906 created "2018-01-05" @default.
- W2777392906 creator A5057985269 @default.
- W2777392906 creator A5063584164 @default.
- W2777392906 creator A5068015318 @default.
- W2777392906 date "2015-01-01" @default.
- W2777392906 modified "2023-09-29" @default.
- W2777392906 title "Reachability analysis of non-linear hybrid systems using Taylor Models" @default.
- W2777392906 cites W105602876 @default.
- W2777392906 cites W1480692184 @default.
- W2777392906 cites W1489501223 @default.
- W2777392906 cites W1496983606 @default.
- W2777392906 cites W1497013959 @default.
- W2777392906 cites W1498631091 @default.
- W2777392906 cites W1504317179 @default.
- W2777392906 cites W1507872748 @default.
- W2777392906 cites W1510918931 @default.
- W2777392906 cites W1511965757 @default.
- W2777392906 cites W1515827155 @default.
- W2777392906 cites W1522694098 @default.
- W2777392906 cites W1523211942 @default.
- W2777392906 cites W1530240157 @default.
- W2777392906 cites W1535116423 @default.
- W2777392906 cites W1537523458 @default.
- W2777392906 cites W1538215585 @default.
- W2777392906 cites W1546282418 @default.
- W2777392906 cites W1552094772 @default.
- W2777392906 cites W1560576390 @default.
- W2777392906 cites W1561907491 @default.
- W2777392906 cites W1563374593 @default.
- W2777392906 cites W1569692898 @default.
- W2777392906 cites W1573344143 @default.
- W2777392906 cites W1575791353 @default.
- W2777392906 cites W1576838367 @default.
- W2777392906 cites W1582899597 @default.
- W2777392906 cites W1585526574 @default.
- W2777392906 cites W1588686192 @default.
- W2777392906 cites W1597196612 @default.
- W2777392906 cites W1604596197 @default.
- W2777392906 cites W1606658314 @default.
- W2777392906 cites W1609596465 @default.
- W2777392906 cites W1652501836 @default.
- W2777392906 cites W1676597814 @default.
- W2777392906 cites W1726255445 @default.
- W2777392906 cites W1763790326 @default.
- W2777392906 cites W1812490945 @default.
- W2777392906 cites W1905380539 @default.
- W2777392906 cites W1955710548 @default.
- W2777392906 cites W1967008192 @default.
- W2777392906 cites W1967184028 @default.
- W2777392906 cites W1968559856 @default.
- W2777392906 cites W1974537499 @default.
- W2777392906 cites W1977797609 @default.
- W2777392906 cites W1983281982 @default.
- W2777392906 cites W1990733120 @default.
- W2777392906 cites W1994097280 @default.
- W2777392906 cites W1998661762 @default.
- W2777392906 cites W2004463571 @default.
- W2777392906 cites W2012580470 @default.
- W2777392906 cites W2016690676 @default.
- W2777392906 cites W2019474388 @default.
- W2777392906 cites W2024567227 @default.
- W2777392906 cites W2024772987 @default.
- W2777392906 cites W2025604257 @default.
- W2777392906 cites W2025733636 @default.
- W2777392906 cites W2031668778 @default.
- W2777392906 cites W2041521369 @default.
- W2777392906 cites W2043100293 @default.
- W2777392906 cites W2059998776 @default.
- W2777392906 cites W2063648336 @default.
- W2777392906 cites W2067136705 @default.
- W2777392906 cites W2071775092 @default.
- W2777392906 cites W2075832873 @default.
- W2777392906 cites W2084859862 @default.
- W2777392906 cites W2085426894 @default.
- W2777392906 cites W2086163366 @default.
- W2777392906 cites W2091316349 @default.
- W2777392906 cites W2100081537 @default.
- W2777392906 cites W2101508170 @default.
- W2777392906 cites W2102696258 @default.
- W2777392906 cites W2104730516 @default.
- W2777392906 cites W2105313514 @default.
- W2777392906 cites W2106565812 @default.
- W2777392906 cites W2112322240 @default.
- W2777392906 cites W2114265324 @default.
- W2777392906 cites W2117087357 @default.
- W2777392906 cites W2122549537 @default.
- W2777392906 cites W2125554177 @default.
- W2777392906 cites W2125624587 @default.
- W2777392906 cites W2128192154 @default.
- W2777392906 cites W2133404041 @default.
- W2777392906 cites W2133642820 @default.
- W2777392906 cites W2134699237 @default.
- W2777392906 cites W2136662198 @default.
- W2777392906 cites W2137662410 @default.
- W2777392906 cites W2137777756 @default.
- W2777392906 cites W2141394518 @default.
- W2777392906 cites W2142106021 @default.
- W2777392906 cites W2145201569 @default.
- W2777392906 cites W2147936671 @default.