Matches in SemOpenAlex for { <https://semopenalex.org/work/W2777694503> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W2777694503 abstract "Density-based clustering, for instance, DBSCAN, is an important approach for pattern recognition and data mining, and has been widely used in many applications. Under large scale streaming data environment, however, DBSCAN suffers from a heavy computational cost because it examines distances between each points multiple times. When dealing with transportation-related applications which usually requires calculating road network distance instead of Euclidean distance, DBSCAN has difficult to meet real-time computation requirement. Focusing on fast identifying linear events, this paper utilizes linear feature to improve the efficiency of clustering by introducing linear referencing system (LRS). LRS has long been used in managing linear features, which could simplify shortest-path computation into 1-dimensional relative distance calculation, thus can significantly reduce computational complexity and cost, and meet the real-time analysis requirement of streaming data. Using vehicle GPS trajectory as an example, this study designs a LRS and its associated dynamic segmentation method for identifying traffic congestions. Experiment results proved the flexibility and efficiency of the proposed LRS-based clustering approach in identifying traffic congestions." @default.
- W2777694503 created "2018-01-05" @default.
- W2777694503 creator A5015186438 @default.
- W2777694503 creator A5018005821 @default.
- W2777694503 creator A5032000688 @default.
- W2777694503 creator A5044275034 @default.
- W2777694503 creator A5066688286 @default.
- W2777694503 date "2015-11-03" @default.
- W2777694503 modified "2023-10-18" @default.
- W2777694503 title "A Fast Clustering Approach for Identifying Traffic Congestions" @default.
- W2777694503 cites W1827315716 @default.
- W2777694503 cites W1967261944 @default.
- W2777694503 cites W2061036630 @default.
- W2777694503 cites W2095897464 @default.
- W2777694503 cites W2120320296 @default.
- W2777694503 cites W2124796422 @default.
- W2777694503 doi "https://doi.org/10.1145/2834882.2834885" @default.
- W2777694503 hasPublicationYear "2015" @default.
- W2777694503 type Work @default.
- W2777694503 sameAs 2777694503 @default.
- W2777694503 citedByCount "0" @default.
- W2777694503 crossrefType "proceedings-article" @default.
- W2777694503 hasAuthorship W2777694503A5015186438 @default.
- W2777694503 hasAuthorship W2777694503A5018005821 @default.
- W2777694503 hasAuthorship W2777694503A5032000688 @default.
- W2777694503 hasAuthorship W2777694503A5044275034 @default.
- W2777694503 hasAuthorship W2777694503A5066688286 @default.
- W2777694503 hasConcept C124101348 @default.
- W2777694503 hasConcept C154945302 @default.
- W2777694503 hasConcept C41008148 @default.
- W2777694503 hasConcept C73555534 @default.
- W2777694503 hasConceptScore W2777694503C124101348 @default.
- W2777694503 hasConceptScore W2777694503C154945302 @default.
- W2777694503 hasConceptScore W2777694503C41008148 @default.
- W2777694503 hasConceptScore W2777694503C73555534 @default.
- W2777694503 hasFunder F4320321001 @default.
- W2777694503 hasLocation W27776945031 @default.
- W2777694503 hasOpenAccess W2777694503 @default.
- W2777694503 hasPrimaryLocation W27776945031 @default.
- W2777694503 hasRelatedWork W1849651648 @default.
- W2777694503 hasRelatedWork W1979871427 @default.
- W2777694503 hasRelatedWork W1999627569 @default.
- W2777694503 hasRelatedWork W2187506573 @default.
- W2777694503 hasRelatedWork W2348097614 @default.
- W2777694503 hasRelatedWork W2354051833 @default.
- W2777694503 hasRelatedWork W2387405106 @default.
- W2777694503 hasRelatedWork W2392374020 @default.
- W2777694503 hasRelatedWork W4243523185 @default.
- W2777694503 hasRelatedWork W763609066 @default.
- W2777694503 isParatext "false" @default.
- W2777694503 isRetracted "false" @default.
- W2777694503 magId "2777694503" @default.
- W2777694503 workType "article" @default.