Matches in SemOpenAlex for { <https://semopenalex.org/work/W2777735072> ?p ?o ?g. }
- W2777735072 endingPage "471" @default.
- W2777735072 startingPage "460" @default.
- W2777735072 abstract "Nanofluid adoption as an alternative coolant for Proton Exchange Membrane (PEM) fuel cell is a new embarkation which hybridizes the nanofluids and PEM fuel cell studies. In this paper, findings on the thermo-electrical performance of a liquid-cooled PEM fuel cell with the adoption of Al2O3 nanofluids were established. Thermo-physical properties of 0.1, 0.3 and 0.5% volume concentration of Al2O3 nanoparticles dispersed in water and water: Ethylene glycol (EG) mixtures of 60:40 were measured and then adopted in PEM fuel cell as cooling medium. The result shows that the cooling rate improved up to 187% with the addition of 0.5% volume concentration of Al2O3 nanofluids to the base fluid of water. This is due to the excellent thermal conductivity property of nanofluids as compared to the base fluid. However, there was a penalty of higher pressure drop and voltage drop experienced. Thermo electrical ratio (TER) and Advantage ratio (AR) were then established to evaluate the feasibility of Al2O3 nanofluid adoption in PEM fuel cells in terms of both electrical and thermo-fluid performance considering all aspects including heat transfer enhancement, fluid flow and PEM fuel cell performance. Upon analysis of these two ratios, 0.1% volume concentration of Al2O3 dispersed in water shows to be the most feasible nanofluid for adoption in a liquid-cooled PEM fuel cell." @default.
- W2777735072 created "2018-01-05" @default.
- W2777735072 creator A5037286779 @default.
- W2777735072 creator A5041408531 @default.
- W2777735072 creator A5048874388 @default.
- W2777735072 creator A5059965196 @default.
- W2777735072 creator A5070159427 @default.
- W2777735072 creator A5088911664 @default.
- W2777735072 date "2018-04-01" @default.
- W2777735072 modified "2023-10-18" @default.
- W2777735072 title "Thermo-electrical performance of PEM fuel cell using Al2O3 nanofluids" @default.
- W2777735072 cites W1246251001 @default.
- W2777735072 cites W1682633143 @default.
- W2777735072 cites W1969309096 @default.
- W2777735072 cites W1984952761 @default.
- W2777735072 cites W1991301913 @default.
- W2777735072 cites W1997712789 @default.
- W2777735072 cites W1999710047 @default.
- W2777735072 cites W2009336601 @default.
- W2777735072 cites W2010364254 @default.
- W2777735072 cites W2016148754 @default.
- W2777735072 cites W2016281616 @default.
- W2777735072 cites W2019646966 @default.
- W2777735072 cites W2019882879 @default.
- W2777735072 cites W2021743480 @default.
- W2777735072 cites W2023055239 @default.
- W2777735072 cites W2033448214 @default.
- W2777735072 cites W2034142852 @default.
- W2777735072 cites W2034685966 @default.
- W2777735072 cites W2038037957 @default.
- W2777735072 cites W2046434706 @default.
- W2777735072 cites W2047718404 @default.
- W2777735072 cites W2051623369 @default.
- W2777735072 cites W2059583475 @default.
- W2777735072 cites W2069284728 @default.
- W2777735072 cites W2072131572 @default.
- W2777735072 cites W2073215165 @default.
- W2777735072 cites W2090022833 @default.
- W2777735072 cites W2095269819 @default.
- W2777735072 cites W2133599163 @default.
- W2777735072 cites W2140866824 @default.
- W2777735072 cites W2164857248 @default.
- W2777735072 cites W2195925611 @default.
- W2777735072 cites W2280486156 @default.
- W2777735072 cites W2282190727 @default.
- W2777735072 cites W2331534115 @default.
- W2777735072 cites W2334125263 @default.
- W2777735072 cites W2340617344 @default.
- W2777735072 cites W2462737767 @default.
- W2777735072 cites W2464074785 @default.
- W2777735072 cites W2526216926 @default.
- W2777735072 cites W2600395929 @default.
- W2777735072 cites W2611703759 @default.
- W2777735072 cites W2620732430 @default.
- W2777735072 cites W2730037105 @default.
- W2777735072 cites W2734492319 @default.
- W2777735072 cites W2740465091 @default.
- W2777735072 cites W2741031840 @default.
- W2777735072 cites W2755288821 @default.
- W2777735072 cites W2755668490 @default.
- W2777735072 cites W2761790989 @default.
- W2777735072 cites W4205552855 @default.
- W2777735072 doi "https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.137" @default.
- W2777735072 hasPublicationYear "2018" @default.
- W2777735072 type Work @default.
- W2777735072 sameAs 2777735072 @default.
- W2777735072 citedByCount "49" @default.
- W2777735072 countsByYear W27777350722018 @default.
- W2777735072 countsByYear W27777350722019 @default.
- W2777735072 countsByYear W27777350722020 @default.
- W2777735072 countsByYear W27777350722021 @default.
- W2777735072 countsByYear W27777350722022 @default.
- W2777735072 countsByYear W27777350722023 @default.
- W2777735072 crossrefType "journal-article" @default.
- W2777735072 hasAuthorship W2777735072A5037286779 @default.
- W2777735072 hasAuthorship W2777735072A5041408531 @default.
- W2777735072 hasAuthorship W2777735072A5048874388 @default.
- W2777735072 hasAuthorship W2777735072A5059965196 @default.
- W2777735072 hasAuthorship W2777735072A5070159427 @default.
- W2777735072 hasAuthorship W2777735072A5088911664 @default.
- W2777735072 hasConcept C114088122 @default.
- W2777735072 hasConcept C121332964 @default.
- W2777735072 hasConcept C127413603 @default.
- W2777735072 hasConcept C132319479 @default.
- W2777735072 hasConcept C155672457 @default.
- W2777735072 hasConcept C171250308 @default.
- W2777735072 hasConcept C192562407 @default.
- W2777735072 hasConcept C20556612 @default.
- W2777735072 hasConcept C21946209 @default.
- W2777735072 hasConcept C2777516009 @default.
- W2777735072 hasConcept C2987658370 @default.
- W2777735072 hasConcept C42360764 @default.
- W2777735072 hasConcept C91914117 @default.
- W2777735072 hasConcept C97355855 @default.
- W2777735072 hasConceptScore W2777735072C114088122 @default.
- W2777735072 hasConceptScore W2777735072C121332964 @default.
- W2777735072 hasConceptScore W2777735072C127413603 @default.
- W2777735072 hasConceptScore W2777735072C132319479 @default.