Matches in SemOpenAlex for { <https://semopenalex.org/work/W2777961825> ?p ?o ?g. }
- W2777961825 endingPage "e0189974" @default.
- W2777961825 startingPage "e0189974" @default.
- W2777961825 abstract "Pluripotent stem cells can potentially be used in clinical applications as a model for studying disease progress. This tracking of disease-causing events in cells requires constant assessment of the quality of stem cells. Existing approaches are inadequate for robust and automated differentiation of stem cell colonies. In this study, we developed a new model of vector-based convolutional neural network (V-CNN) with respect to extracted features of the induced pluripotent stem cell (iPSC) colony for distinguishing colony characteristics. A transfer function from the feature vectors to the virtual image was generated at the front of the CNN in order for classification of feature vectors of healthy and unhealthy colonies. The robustness of the proposed V-CNN model in distinguishing colonies was compared with that of the competitive support vector machine (SVM) classifier based on morphological, textural, and combined features. Additionally, five-fold cross-validation was used to investigate the performance of the V-CNN model. The precision, recall, and F-measure values of the V-CNN model were comparatively higher than those of the SVM classifier, with a range of 87-93%, indicating fewer false positives and false negative rates. Furthermore, for determining the quality of colonies, the V-CNN model showed higher accuracy values based on morphological (95.5%), textural (91.0%), and combined (93.2%) features than those estimated with the SVM classifier (86.7, 83.3, and 83.4%, respectively). Similarly, the accuracy of the feature sets using five-fold cross-validation was above 90% for the V-CNN model, whereas that yielded by the SVM model was in the range of 75-77%. We thus concluded that the proposed V-CNN model outperforms the conventional SVM classifier, which strongly suggests that it as a reliable framework for robust colony classification of iPSCs. It can also serve as a cost-effective quality recognition tool during culture and other experimental procedures." @default.
- W2777961825 created "2018-01-05" @default.
- W2777961825 creator A5033422512 @default.
- W2777961825 creator A5043124347 @default.
- W2777961825 creator A5050317153 @default.
- W2777961825 creator A5060429696 @default.
- W2777961825 creator A5076544687 @default.
- W2777961825 creator A5086456461 @default.
- W2777961825 date "2017-12-27" @default.
- W2777961825 modified "2023-10-18" @default.
- W2777961825 title "Deep vector-based convolutional neural network approach for automatic recognition of colonies of induced pluripotent stem cells" @default.
- W2777961825 cites W1994142477 @default.
- W2777961825 cites W2004410965 @default.
- W2777961825 cites W2007786482 @default.
- W2777961825 cites W2008748102 @default.
- W2777961825 cites W2020940363 @default.
- W2777961825 cites W2040343062 @default.
- W2777961825 cites W2044465660 @default.
- W2777961825 cites W2045389663 @default.
- W2777961825 cites W2051540404 @default.
- W2777961825 cites W2053911973 @default.
- W2777961825 cites W2063504414 @default.
- W2777961825 cites W2064642825 @default.
- W2777961825 cites W2119126373 @default.
- W2777961825 cites W2138977668 @default.
- W2777961825 cites W2139186788 @default.
- W2777961825 cites W2139212933 @default.
- W2777961825 cites W2146292423 @default.
- W2777961825 cites W2157645703 @default.
- W2777961825 cites W2171394431 @default.
- W2777961825 cites W2179324930 @default.
- W2777961825 cites W22040386 @default.
- W2777961825 cites W2252481251 @default.
- W2777961825 cites W2253961736 @default.
- W2777961825 cites W2269649163 @default.
- W2777961825 cites W2295740502 @default.
- W2777961825 cites W2474850219 @default.
- W2777961825 cites W2524379414 @default.
- W2777961825 cites W2525530542 @default.
- W2777961825 cites W2545817400 @default.
- W2777961825 cites W2548342201 @default.
- W2777961825 cites W2586353415 @default.
- W2777961825 cites W2591213449 @default.
- W2777961825 doi "https://doi.org/10.1371/journal.pone.0189974" @default.
- W2777961825 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5744970" @default.
- W2777961825 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29281701" @default.
- W2777961825 hasPublicationYear "2017" @default.
- W2777961825 type Work @default.
- W2777961825 sameAs 2777961825 @default.
- W2777961825 citedByCount "42" @default.
- W2777961825 countsByYear W27779618252019 @default.
- W2777961825 countsByYear W27779618252020 @default.
- W2777961825 countsByYear W27779618252021 @default.
- W2777961825 countsByYear W27779618252022 @default.
- W2777961825 countsByYear W27779618252023 @default.
- W2777961825 crossrefType "journal-article" @default.
- W2777961825 hasAuthorship W2777961825A5033422512 @default.
- W2777961825 hasAuthorship W2777961825A5043124347 @default.
- W2777961825 hasAuthorship W2777961825A5050317153 @default.
- W2777961825 hasAuthorship W2777961825A5060429696 @default.
- W2777961825 hasAuthorship W2777961825A5076544687 @default.
- W2777961825 hasAuthorship W2777961825A5086456461 @default.
- W2777961825 hasBestOaLocation W27779618251 @default.
- W2777961825 hasConcept C104317684 @default.
- W2777961825 hasConcept C107459253 @default.
- W2777961825 hasConcept C108583219 @default.
- W2777961825 hasConcept C119857082 @default.
- W2777961825 hasConcept C12267149 @default.
- W2777961825 hasConcept C145103041 @default.
- W2777961825 hasConcept C153180895 @default.
- W2777961825 hasConcept C154945302 @default.
- W2777961825 hasConcept C27181475 @default.
- W2777961825 hasConcept C41008148 @default.
- W2777961825 hasConcept C55493867 @default.
- W2777961825 hasConcept C63479239 @default.
- W2777961825 hasConcept C64869954 @default.
- W2777961825 hasConcept C81363708 @default.
- W2777961825 hasConcept C86803240 @default.
- W2777961825 hasConcept C95623464 @default.
- W2777961825 hasConceptScore W2777961825C104317684 @default.
- W2777961825 hasConceptScore W2777961825C107459253 @default.
- W2777961825 hasConceptScore W2777961825C108583219 @default.
- W2777961825 hasConceptScore W2777961825C119857082 @default.
- W2777961825 hasConceptScore W2777961825C12267149 @default.
- W2777961825 hasConceptScore W2777961825C145103041 @default.
- W2777961825 hasConceptScore W2777961825C153180895 @default.
- W2777961825 hasConceptScore W2777961825C154945302 @default.
- W2777961825 hasConceptScore W2777961825C27181475 @default.
- W2777961825 hasConceptScore W2777961825C41008148 @default.
- W2777961825 hasConceptScore W2777961825C55493867 @default.
- W2777961825 hasConceptScore W2777961825C63479239 @default.
- W2777961825 hasConceptScore W2777961825C64869954 @default.
- W2777961825 hasConceptScore W2777961825C81363708 @default.
- W2777961825 hasConceptScore W2777961825C86803240 @default.
- W2777961825 hasConceptScore W2777961825C95623464 @default.
- W2777961825 hasFunder F4320322107 @default.
- W2777961825 hasFunder F4320322120 @default.
- W2777961825 hasIssue "12" @default.