Matches in SemOpenAlex for { <https://semopenalex.org/work/W2778081019> ?p ?o ?g. }
- W2778081019 endingPage "103" @default.
- W2778081019 startingPage "93" @default.
- W2778081019 abstract "Cardiotocography (CTG) that contains fetal heart rate (FHR) and uterine contraction (UC) signals is a monitoring technique. During the last decades, FHR signals have been classified as normal, suspicious, and pathological using machine learning techniques. As a classifier, artificial neural network (ANN) is notable due to its powerful capabilities. For this reason, behaviors and performances of neural network training algorithms were investigated and compared on classification task of the CTG traces in this study. Training algorithms of neural network were categorized in five group as Gradient Descent, Resilient Backpropagation, Conjugate Gradient, Quasi-Newton, and Levenberg-Marquardt. Two different experimental setups were performed during the training and test stages to achieve more generalized results. Furthermore, several evaluation parameters, such as accuracy (ACC), sensitivity (Se), specificity (Sp), and geometric mean (GM), were taken into account during performance comparison of the algorithms. An open access CTG dataset containing 2126 instances with 21 features and located under UCI Machine Learning Repository was used in this study. According to results of this study, all training algorithms produced rather satisfactory results. In addition, the best classification performances were obtained with Levenberg-Marquardt backpropagation (LM) and Resilient Backpropagation (RP) algorithms. The GM values of RP and LM were obtained as 89.69% and 86.14%, respectively. Consequently, this study confirms that ANN is a useful machine learning tool to classify FHR recordings." @default.
- W2778081019 created "2018-01-05" @default.
- W2778081019 creator A5015835206 @default.
- W2778081019 creator A5066969369 @default.
- W2778081019 date "2017-12-26" @default.
- W2778081019 modified "2023-10-17" @default.
- W2778081019 title "A Study of Artificial Neural Network Training Algorithms for Classification of Cardiotocography Signals" @default.
- W2778081019 cites W1920218075 @default.
- W2778081019 cites W1931727703 @default.
- W2778081019 cites W1984186688 @default.
- W2778081019 cites W1993686430 @default.
- W2778081019 cites W2006544565 @default.
- W2778081019 cites W2014317722 @default.
- W2778081019 cites W2014565402 @default.
- W2778081019 cites W2018115628 @default.
- W2778081019 cites W2028070629 @default.
- W2778081019 cites W2043382734 @default.
- W2778081019 cites W2051812123 @default.
- W2778081019 cites W2060900973 @default.
- W2778081019 cites W2066067927 @default.
- W2778081019 cites W2068484625 @default.
- W2778081019 cites W2070738272 @default.
- W2778081019 cites W2072333385 @default.
- W2778081019 cites W2087070363 @default.
- W2778081019 cites W2120518087 @default.
- W2778081019 cites W2130617400 @default.
- W2778081019 cites W2132122811 @default.
- W2778081019 cites W2137687977 @default.
- W2778081019 cites W2143908786 @default.
- W2778081019 cites W2144775072 @default.
- W2778081019 cites W2155482699 @default.
- W2778081019 cites W2155642345 @default.
- W2778081019 cites W2331970566 @default.
- W2778081019 cites W24821413 @default.
- W2778081019 cites W2761415985 @default.
- W2778081019 cites W3144668397 @default.
- W2778081019 cites W4248517445 @default.
- W2778081019 cites W798407487 @default.
- W2778081019 cites W899850074 @default.
- W2778081019 cites W94052953 @default.
- W2778081019 doi "https://doi.org/10.17678/beuscitech.338085" @default.
- W2778081019 hasPublicationYear "2017" @default.
- W2778081019 type Work @default.
- W2778081019 sameAs 2778081019 @default.
- W2778081019 citedByCount "54" @default.
- W2778081019 countsByYear W27780810192018 @default.
- W2778081019 countsByYear W27780810192019 @default.
- W2778081019 countsByYear W27780810192020 @default.
- W2778081019 countsByYear W27780810192021 @default.
- W2778081019 countsByYear W27780810192022 @default.
- W2778081019 countsByYear W27780810192023 @default.
- W2778081019 crossrefType "journal-article" @default.
- W2778081019 hasAuthorship W2778081019A5015835206 @default.
- W2778081019 hasAuthorship W2778081019A5066969369 @default.
- W2778081019 hasBestOaLocation W27780810191 @default.
- W2778081019 hasConcept C11413529 @default.
- W2778081019 hasConcept C119857082 @default.
- W2778081019 hasConcept C153180895 @default.
- W2778081019 hasConcept C153258448 @default.
- W2778081019 hasConcept C154945302 @default.
- W2778081019 hasConcept C155032097 @default.
- W2778081019 hasConcept C172680121 @default.
- W2778081019 hasConcept C2776046940 @default.
- W2778081019 hasConcept C2779234561 @default.
- W2778081019 hasConcept C41008148 @default.
- W2778081019 hasConcept C50644808 @default.
- W2778081019 hasConcept C54355233 @default.
- W2778081019 hasConcept C81184566 @default.
- W2778081019 hasConcept C86803240 @default.
- W2778081019 hasConcept C95623464 @default.
- W2778081019 hasConceptScore W2778081019C11413529 @default.
- W2778081019 hasConceptScore W2778081019C119857082 @default.
- W2778081019 hasConceptScore W2778081019C153180895 @default.
- W2778081019 hasConceptScore W2778081019C153258448 @default.
- W2778081019 hasConceptScore W2778081019C154945302 @default.
- W2778081019 hasConceptScore W2778081019C155032097 @default.
- W2778081019 hasConceptScore W2778081019C172680121 @default.
- W2778081019 hasConceptScore W2778081019C2776046940 @default.
- W2778081019 hasConceptScore W2778081019C2779234561 @default.
- W2778081019 hasConceptScore W2778081019C41008148 @default.
- W2778081019 hasConceptScore W2778081019C50644808 @default.
- W2778081019 hasConceptScore W2778081019C54355233 @default.
- W2778081019 hasConceptScore W2778081019C81184566 @default.
- W2778081019 hasConceptScore W2778081019C86803240 @default.
- W2778081019 hasConceptScore W2778081019C95623464 @default.
- W2778081019 hasIssue "2" @default.
- W2778081019 hasLocation W27780810191 @default.
- W2778081019 hasLocation W27780810192 @default.
- W2778081019 hasOpenAccess W2778081019 @default.
- W2778081019 hasPrimaryLocation W27780810191 @default.
- W2778081019 hasRelatedWork W1922626558 @default.
- W2778081019 hasRelatedWork W2104893957 @default.
- W2778081019 hasRelatedWork W2115605526 @default.
- W2778081019 hasRelatedWork W2156798906 @default.
- W2778081019 hasRelatedWork W2405196115 @default.
- W2778081019 hasRelatedWork W2554138451 @default.
- W2778081019 hasRelatedWork W2778081019 @default.
- W2778081019 hasRelatedWork W2788727425 @default.