Matches in SemOpenAlex for { <https://semopenalex.org/work/W2778292275> ?p ?o ?g. }
- W2778292275 abstract "Phenotypic classification is problematic because small samples are ubiquitous; and, for these, use of prior knowledge is critical. If knowledge concerning the feature-label distribution – for instance, genetic pathways – is available, then it can be used in learning. Optimal Bayesian classification provides optimal classification under model uncertainty. It differs from classical Bayesian methods in which a classification model is assumed and prior distributions are placed on model parameters. With optimal Bayesian classification, uncertainty is treated directly on the feature-label distribution, which assures full utilization of prior knowledge and is guaranteed to outperform classical methods. The salient problem confronting optimal Bayesian classification is prior construction. In this paper, we propose a new prior construction methodology based on a general framework of constraints in the form of conditional probability statements. We call this prior the maximal knowledge-driven information prior (MKDIP). The new constraint framework is more flexible than our previous methods as it naturally handles the potential inconsistency in archived regulatory relationships and conditioning can be augmented by other knowledge, such as population statistics. We also extend the application of prior construction to a multinomial mixture model when labels are unknown, which often occurs in practice. The performance of the proposed methods is examined on two important pathway families, the mammalian cell-cycle and a set of p53-related pathways, and also on a publicly available gene expression dataset of non-small cell lung cancer when combined with the existing prior knowledge on relevant signaling pathways. The new proposed general prior construction framework extends the prior construction methodology to a more flexible framework that results in better inference when proper prior knowledge exists. Moreover, the extension of optimal Bayesian classification to multinomial mixtures where data sets are both small and unlabeled, enables superior classifier design using small, unstructured data sets. We have demonstrated the effectiveness of our approach using pathway information and available knowledge of gene regulating functions; however, the underlying theory can be applied to a wide variety of knowledge types, and other applications when there are small samples." @default.
- W2778292275 created "2018-01-05" @default.
- W2778292275 creator A5010097254 @default.
- W2778292275 creator A5013352965 @default.
- W2778292275 creator A5046509031 @default.
- W2778292275 creator A5073946580 @default.
- W2778292275 date "2017-12-01" @default.
- W2778292275 modified "2023-10-15" @default.
- W2778292275 title "Incorporating biological prior knowledge for Bayesian learning via maximal knowledge-driven information priors" @default.
- W2778292275 cites W1971224531 @default.
- W2778292275 cites W1971536112 @default.
- W2778292275 cites W1985495956 @default.
- W2778292275 cites W1986480666 @default.
- W2778292275 cites W1988010755 @default.
- W2778292275 cites W1992045522 @default.
- W2778292275 cites W1999640431 @default.
- W2778292275 cites W2001220384 @default.
- W2778292275 cites W2006681603 @default.
- W2778292275 cites W2009720434 @default.
- W2778292275 cites W2017103957 @default.
- W2778292275 cites W2028634149 @default.
- W2778292275 cites W2032558547 @default.
- W2778292275 cites W2035072927 @default.
- W2778292275 cites W2044593983 @default.
- W2778292275 cites W2049480816 @default.
- W2778292275 cites W2058237157 @default.
- W2778292275 cites W2068762252 @default.
- W2778292275 cites W2076037741 @default.
- W2778292275 cites W2077575889 @default.
- W2778292275 cites W2077813311 @default.
- W2778292275 cites W2087167584 @default.
- W2778292275 cites W2088538053 @default.
- W2778292275 cites W2101887349 @default.
- W2778292275 cites W2106370119 @default.
- W2778292275 cites W2106596127 @default.
- W2778292275 cites W2110256992 @default.
- W2778292275 cites W2113582979 @default.
- W2778292275 cites W2114843025 @default.
- W2778292275 cites W2115350121 @default.
- W2778292275 cites W2120261416 @default.
- W2778292275 cites W2120324727 @default.
- W2778292275 cites W2124167150 @default.
- W2778292275 cites W2128689695 @default.
- W2778292275 cites W2129158580 @default.
- W2778292275 cites W2132935366 @default.
- W2778292275 cites W2134258050 @default.
- W2778292275 cites W2134555649 @default.
- W2778292275 cites W2134717973 @default.
- W2778292275 cites W2138031337 @default.
- W2778292275 cites W2139606141 @default.
- W2778292275 cites W2146408674 @default.
- W2778292275 cites W2149064745 @default.
- W2778292275 cites W2149441684 @default.
- W2778292275 cites W2153684756 @default.
- W2778292275 cites W2159482845 @default.
- W2778292275 cites W2160533336 @default.
- W2778292275 cites W2166122445 @default.
- W2778292275 cites W2166162270 @default.
- W2778292275 cites W23729838 @default.
- W2778292275 cites W2774435077 @default.
- W2778292275 cites W2911964244 @default.
- W2778292275 cites W3102599985 @default.
- W2778292275 cites W4231518691 @default.
- W2778292275 cites W4249186015 @default.
- W2778292275 cites W4292691288 @default.
- W2778292275 cites W4294216483 @default.
- W2778292275 cites W2115041568 @default.
- W2778292275 doi "https://doi.org/10.1186/s12859-017-1893-4" @default.
- W2778292275 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5751802" @default.
- W2778292275 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29297278" @default.
- W2778292275 hasPublicationYear "2017" @default.
- W2778292275 type Work @default.
- W2778292275 sameAs 2778292275 @default.
- W2778292275 citedByCount "33" @default.
- W2778292275 countsByYear W27782922752017 @default.
- W2778292275 countsByYear W27782922752018 @default.
- W2778292275 countsByYear W27782922752019 @default.
- W2778292275 countsByYear W27782922752020 @default.
- W2778292275 countsByYear W27782922752021 @default.
- W2778292275 countsByYear W27782922752022 @default.
- W2778292275 countsByYear W27782922752023 @default.
- W2778292275 crossrefType "journal-article" @default.
- W2778292275 hasAuthorship W2778292275A5010097254 @default.
- W2778292275 hasAuthorship W2778292275A5013352965 @default.
- W2778292275 hasAuthorship W2778292275A5046509031 @default.
- W2778292275 hasAuthorship W2778292275A5073946580 @default.
- W2778292275 hasBestOaLocation W27782922751 @default.
- W2778292275 hasConcept C105795698 @default.
- W2778292275 hasConcept C107673813 @default.
- W2778292275 hasConcept C119857082 @default.
- W2778292275 hasConcept C124101348 @default.
- W2778292275 hasConcept C138885662 @default.
- W2778292275 hasConcept C154945302 @default.
- W2778292275 hasConcept C177769412 @default.
- W2778292275 hasConcept C192065140 @default.
- W2778292275 hasConcept C2524010 @default.
- W2778292275 hasConcept C2776036281 @default.
- W2778292275 hasConcept C2776401178 @default.
- W2778292275 hasConcept C2780719617 @default.
- W2778292275 hasConcept C33923547 @default.