Matches in SemOpenAlex for { <https://semopenalex.org/work/W2778332848> ?p ?o ?g. }
- W2778332848 endingPage "146" @default.
- W2778332848 startingPage "135" @default.
- W2778332848 abstract "Two-dimensional or three-dimensional images from the electrical capacitance tomography (ECT) technology provide powerful evidences for revealing complicated mechanisms behind behaviors of tomographic objects. In order to satisfy the increasing demands of dynamic measurements in real-world industrial applications, in this paper a sequential dynamic imaging model is proposed to model the inverse problem with the focus on the ECT imaging, and a new cost function that encapsulates the temporal constraint, the reweighted L1 norm based spatial constraint and the reweighted nuclear norm based low rank constraint is constructed to convert the dynamic inversion problem into a minimization problem. A new algorithm that splits an intractable optimization problem into several simpler sub-problems is developed to solve the new cost function. Comprehensive evaluations of representative imaging targets and comparisons with state-of-the-art imaging algorithms demonstrate the superiorities of the imaging technique proposed in this study on improving the imaging quality and robustness." @default.
- W2778332848 created "2018-01-05" @default.
- W2778332848 creator A5008619904 @default.
- W2778332848 creator A5018989901 @default.
- W2778332848 creator A5037291989 @default.
- W2778332848 creator A5042626482 @default.
- W2778332848 date "2018-03-01" @default.
- W2778332848 modified "2023-09-27" @default.
- W2778332848 title "Combination regularization reconstruction method for electrical capacitance tomography" @default.
- W2778332848 cites W1656500565 @default.
- W2778332848 cites W1793335974 @default.
- W2778332848 cites W1943431218 @default.
- W2778332848 cites W1970341134 @default.
- W2778332848 cites W1973215395 @default.
- W2778332848 cites W1975080737 @default.
- W2778332848 cites W1980454827 @default.
- W2778332848 cites W1984011536 @default.
- W2778332848 cites W1990381576 @default.
- W2778332848 cites W1990627496 @default.
- W2778332848 cites W1990919278 @default.
- W2778332848 cites W1997127241 @default.
- W2778332848 cites W1999896100 @default.
- W2778332848 cites W2000241688 @default.
- W2778332848 cites W2003816116 @default.
- W2778332848 cites W2005836623 @default.
- W2778332848 cites W2022002298 @default.
- W2778332848 cites W2031604650 @default.
- W2778332848 cites W2035414577 @default.
- W2778332848 cites W2036695884 @default.
- W2778332848 cites W2049772201 @default.
- W2778332848 cites W2052981193 @default.
- W2778332848 cites W2056201402 @default.
- W2778332848 cites W2061345909 @default.
- W2778332848 cites W2062061488 @default.
- W2778332848 cites W2069558524 @default.
- W2778332848 cites W2070738097 @default.
- W2778332848 cites W2073283474 @default.
- W2778332848 cites W2084497670 @default.
- W2778332848 cites W2100556411 @default.
- W2778332848 cites W2101916945 @default.
- W2778332848 cites W2108165393 @default.
- W2778332848 cites W2114314161 @default.
- W2778332848 cites W2116818806 @default.
- W2778332848 cites W2126975071 @default.
- W2778332848 cites W2132937363 @default.
- W2778332848 cites W2134332047 @default.
- W2778332848 cites W2142058898 @default.
- W2778332848 cites W2148273275 @default.
- W2778332848 cites W2258823796 @default.
- W2778332848 cites W2478234951 @default.
- W2778332848 cites W2514239081 @default.
- W2778332848 cites W2611328865 @default.
- W2778332848 cites W2963322354 @default.
- W2778332848 cites W4234954550 @default.
- W2778332848 doi "https://doi.org/10.1016/j.flowmeasinst.2017.12.010" @default.
- W2778332848 hasPublicationYear "2018" @default.
- W2778332848 type Work @default.
- W2778332848 sameAs 2778332848 @default.
- W2778332848 citedByCount "8" @default.
- W2778332848 countsByYear W27783328482019 @default.
- W2778332848 countsByYear W27783328482020 @default.
- W2778332848 countsByYear W27783328482021 @default.
- W2778332848 countsByYear W27783328482022 @default.
- W2778332848 crossrefType "journal-article" @default.
- W2778332848 hasAuthorship W2778332848A5008619904 @default.
- W2778332848 hasAuthorship W2778332848A5018989901 @default.
- W2778332848 hasAuthorship W2778332848A5037291989 @default.
- W2778332848 hasAuthorship W2778332848A5042626482 @default.
- W2778332848 hasConcept C104317684 @default.
- W2778332848 hasConcept C11413529 @default.
- W2778332848 hasConcept C120665830 @default.
- W2778332848 hasConcept C121332964 @default.
- W2778332848 hasConcept C126255220 @default.
- W2778332848 hasConcept C134306372 @default.
- W2778332848 hasConcept C135252773 @default.
- W2778332848 hasConcept C141379421 @default.
- W2778332848 hasConcept C147764199 @default.
- W2778332848 hasConcept C154945302 @default.
- W2778332848 hasConcept C163716698 @default.
- W2778332848 hasConcept C17525397 @default.
- W2778332848 hasConcept C185592680 @default.
- W2778332848 hasConcept C2524010 @default.
- W2778332848 hasConcept C2776036281 @default.
- W2778332848 hasConcept C2776135515 @default.
- W2778332848 hasConcept C2777418626 @default.
- W2778332848 hasConcept C30066665 @default.
- W2778332848 hasConcept C33923547 @default.
- W2778332848 hasConcept C41008148 @default.
- W2778332848 hasConcept C55493867 @default.
- W2778332848 hasConcept C62520636 @default.
- W2778332848 hasConcept C63479239 @default.
- W2778332848 hasConcept C97742081 @default.
- W2778332848 hasConceptScore W2778332848C104317684 @default.
- W2778332848 hasConceptScore W2778332848C11413529 @default.
- W2778332848 hasConceptScore W2778332848C120665830 @default.
- W2778332848 hasConceptScore W2778332848C121332964 @default.
- W2778332848 hasConceptScore W2778332848C126255220 @default.
- W2778332848 hasConceptScore W2778332848C134306372 @default.