Matches in SemOpenAlex for { <https://semopenalex.org/work/W2778382488> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2778382488 abstract "The use of cloud resources for processing and analysing medical data has the potential to revolutionise the treatment of a number of chronic conditions. For example, it has been shown that it is possible to manage conditions such as diabetes, obesity and cardiovascular disease by increasing the right forms of physical activity for the patient. Typically, movement data is collected for a patient over a period of several weeks using a wrist worn accelerometer. This data, however, is large and its analysis can require significant computational resources. Cloud computing offers a convenient solution as it can be paid for as needed and is capable of scaling to store and process large numbers of data sets simultaneously. However, because the charging model for the cloud represents, to some extent, an unknown cost and therefore risk to project managers, it is important to have an estimate of the likely data processing and storage costs that will be required to analyse a set of data. This could take the form of data collected from a patient in clinic or of entire cohorts of data collected from large studies. If, however, an accurate model was available that could predict the compute and storage requirements associated with a piece of analysis code, decisions could be made as to the scale of resources required in order to obtain results within a known timescale. This paper makes use of provenance and performance data collected as part of routine e-Science Central workflow executions to examine the feasibility of automatically generating predictive models for workflow execution times based solely on observed characteristics such as data volumes processed, algorithm settings and execution durations. The utility of this approach will be demonstrated via a set of benchmarking examples before being used to model workflow executions performed as part of two large medical movement analysis studies." @default.
- W2778382488 created "2018-01-05" @default.
- W2778382488 creator A5048919001 @default.
- W2778382488 creator A5056396187 @default.
- W2778382488 creator A5074800022 @default.
- W2778382488 date "2016-01-01" @default.
- W2778382488 modified "2023-09-26" @default.
- W2778382488 title "Prediction of workflow execution time using provenance traces: practical applications in medical data processing" @default.
- W2778382488 hasPublicationYear "2016" @default.
- W2778382488 type Work @default.
- W2778382488 sameAs 2778382488 @default.
- W2778382488 citedByCount "0" @default.
- W2778382488 crossrefType "journal-article" @default.
- W2778382488 hasAuthorship W2778382488A5048919001 @default.
- W2778382488 hasAuthorship W2778382488A5056396187 @default.
- W2778382488 hasAuthorship W2778382488A5074800022 @default.
- W2778382488 hasConcept C111919701 @default.
- W2778382488 hasConcept C124101348 @default.
- W2778382488 hasConcept C138827492 @default.
- W2778382488 hasConcept C154945302 @default.
- W2778382488 hasConcept C177212765 @default.
- W2778382488 hasConcept C177264268 @default.
- W2778382488 hasConcept C199360897 @default.
- W2778382488 hasConcept C2522767166 @default.
- W2778382488 hasConcept C41008148 @default.
- W2778382488 hasConcept C58489278 @default.
- W2778382488 hasConcept C77088390 @default.
- W2778382488 hasConcept C79974875 @default.
- W2778382488 hasConcept C98045186 @default.
- W2778382488 hasConceptScore W2778382488C111919701 @default.
- W2778382488 hasConceptScore W2778382488C124101348 @default.
- W2778382488 hasConceptScore W2778382488C138827492 @default.
- W2778382488 hasConceptScore W2778382488C154945302 @default.
- W2778382488 hasConceptScore W2778382488C177212765 @default.
- W2778382488 hasConceptScore W2778382488C177264268 @default.
- W2778382488 hasConceptScore W2778382488C199360897 @default.
- W2778382488 hasConceptScore W2778382488C2522767166 @default.
- W2778382488 hasConceptScore W2778382488C41008148 @default.
- W2778382488 hasConceptScore W2778382488C58489278 @default.
- W2778382488 hasConceptScore W2778382488C77088390 @default.
- W2778382488 hasConceptScore W2778382488C79974875 @default.
- W2778382488 hasConceptScore W2778382488C98045186 @default.
- W2778382488 hasLocation W27783824881 @default.
- W2778382488 hasOpenAccess W2778382488 @default.
- W2778382488 hasPrimaryLocation W27783824881 @default.
- W2778382488 hasRelatedWork W131624026 @default.
- W2778382488 hasRelatedWork W1585821801 @default.
- W2778382488 hasRelatedWork W168917229 @default.
- W2778382488 hasRelatedWork W1964797840 @default.
- W2778382488 hasRelatedWork W2033465935 @default.
- W2778382488 hasRelatedWork W2083344369 @default.
- W2778382488 hasRelatedWork W2181657471 @default.
- W2778382488 hasRelatedWork W2397122681 @default.
- W2778382488 hasRelatedWork W24537698 @default.
- W2778382488 hasRelatedWork W2474851488 @default.
- W2778382488 hasRelatedWork W2782825075 @default.
- W2778382488 hasRelatedWork W2808629221 @default.
- W2778382488 hasRelatedWork W2904073262 @default.
- W2778382488 hasRelatedWork W2913220519 @default.
- W2778382488 hasRelatedWork W2915062535 @default.
- W2778382488 hasRelatedWork W3110978125 @default.
- W2778382488 hasRelatedWork W3197280265 @default.
- W2778382488 hasRelatedWork W3198940670 @default.
- W2778382488 hasRelatedWork W81827430 @default.
- W2778382488 hasRelatedWork W2740030894 @default.
- W2778382488 isParatext "false" @default.
- W2778382488 isRetracted "false" @default.
- W2778382488 magId "2778382488" @default.
- W2778382488 workType "article" @default.