Matches in SemOpenAlex for { <https://semopenalex.org/work/W2778392279> ?p ?o ?g. }
- W2778392279 endingPage "20" @default.
- W2778392279 startingPage "14" @default.
- W2778392279 abstract "The interferences of irrelevant information, overlapping and shifts of peaks appear mostly in near infrared (NIR) spectroscopy, especially in complex samples, which seriously impede the accurate quantification. In this work, the features of raw NIR spectra represented by Tchebichef image moments (TMs) were employed to partial least square (PLS) modeling. The proposed strategy was applied to quantitative analysis of the components in complex samples based on their raw NIR spectra, and the obtained models were strictly evaluated by their statistical parameters. Our study indicates that the information in raw NIR spectra can be reorganized and represented by TM method owing to its powerful multi-resolution capability and inherent invariance property, which is beneficial to extract the important information of target components. Compared with the PLS and interval partial least square (iPLS) method, the proposed approach could provide accurate and reliable analytical results. Therefore, as an efficient pretreatment method, TMs can be used to improve the analytical precision of PLS based on conventional NIR spectra." @default.
- W2778392279 created "2018-01-05" @default.
- W2778392279 creator A5006146957 @default.
- W2778392279 creator A5017488500 @default.
- W2778392279 creator A5025456153 @default.
- W2778392279 creator A5065172118 @default.
- W2778392279 creator A5091586201 @default.
- W2778392279 date "2018-02-01" @default.
- W2778392279 modified "2023-09-27" @default.
- W2778392279 title "Applying Tchebichef image moments to quantitative analysis of the components in complex samples based on raw NIR spectra" @default.
- W2778392279 cites W1965036218 @default.
- W2778392279 cites W1966793708 @default.
- W2778392279 cites W1967853186 @default.
- W2778392279 cites W1968263491 @default.
- W2778392279 cites W1973087775 @default.
- W2778392279 cites W1973353729 @default.
- W2778392279 cites W1976088700 @default.
- W2778392279 cites W1977829188 @default.
- W2778392279 cites W1979704339 @default.
- W2778392279 cites W1980668403 @default.
- W2778392279 cites W1980745841 @default.
- W2778392279 cites W1996851544 @default.
- W2778392279 cites W1997960258 @default.
- W2778392279 cites W2007178835 @default.
- W2778392279 cites W2007808016 @default.
- W2778392279 cites W2016090370 @default.
- W2778392279 cites W2016300835 @default.
- W2778392279 cites W2022158859 @default.
- W2778392279 cites W2026255638 @default.
- W2778392279 cites W2028717280 @default.
- W2778392279 cites W2033872649 @default.
- W2778392279 cites W2034917411 @default.
- W2778392279 cites W2042810309 @default.
- W2778392279 cites W2043633763 @default.
- W2778392279 cites W2045125597 @default.
- W2778392279 cites W2062994871 @default.
- W2778392279 cites W2072086937 @default.
- W2778392279 cites W2072784440 @default.
- W2778392279 cites W2078759288 @default.
- W2778392279 cites W2099067734 @default.
- W2778392279 cites W2116938181 @default.
- W2778392279 cites W2116956729 @default.
- W2778392279 cites W2124041826 @default.
- W2778392279 cites W2158863190 @default.
- W2778392279 cites W2168970333 @default.
- W2778392279 cites W2411908914 @default.
- W2778392279 cites W2413657961 @default.
- W2778392279 cites W24821413 @default.
- W2778392279 cites W2493904203 @default.
- W2778392279 cites W2516556861 @default.
- W2778392279 doi "https://doi.org/10.1016/j.chemolab.2017.12.011" @default.
- W2778392279 hasPublicationYear "2018" @default.
- W2778392279 type Work @default.
- W2778392279 sameAs 2778392279 @default.
- W2778392279 citedByCount "7" @default.
- W2778392279 countsByYear W27783922792018 @default.
- W2778392279 countsByYear W27783922792019 @default.
- W2778392279 countsByYear W27783922792022 @default.
- W2778392279 crossrefType "journal-article" @default.
- W2778392279 hasAuthorship W2778392279A5006146957 @default.
- W2778392279 hasAuthorship W2778392279A5017488500 @default.
- W2778392279 hasAuthorship W2778392279A5025456153 @default.
- W2778392279 hasAuthorship W2778392279A5065172118 @default.
- W2778392279 hasAuthorship W2778392279A5091586201 @default.
- W2778392279 hasBestOaLocation W27783922791 @default.
- W2778392279 hasConcept C105795698 @default.
- W2778392279 hasConcept C111472728 @default.
- W2778392279 hasConcept C113196181 @default.
- W2778392279 hasConcept C119857082 @default.
- W2778392279 hasConcept C120665830 @default.
- W2778392279 hasConcept C121332964 @default.
- W2778392279 hasConcept C1276947 @default.
- W2778392279 hasConcept C138268822 @default.
- W2778392279 hasConcept C138885662 @default.
- W2778392279 hasConcept C139945424 @default.
- W2778392279 hasConcept C151304367 @default.
- W2778392279 hasConcept C153180895 @default.
- W2778392279 hasConcept C154945302 @default.
- W2778392279 hasConcept C185592680 @default.
- W2778392279 hasConcept C186060115 @default.
- W2778392279 hasConcept C189950617 @default.
- W2778392279 hasConcept C22354355 @default.
- W2778392279 hasConcept C33923547 @default.
- W2778392279 hasConcept C41008148 @default.
- W2778392279 hasConcept C43571822 @default.
- W2778392279 hasConcept C43617362 @default.
- W2778392279 hasConcept C4839761 @default.
- W2778392279 hasConcept C86803240 @default.
- W2778392279 hasConceptScore W2778392279C105795698 @default.
- W2778392279 hasConceptScore W2778392279C111472728 @default.
- W2778392279 hasConceptScore W2778392279C113196181 @default.
- W2778392279 hasConceptScore W2778392279C119857082 @default.
- W2778392279 hasConceptScore W2778392279C120665830 @default.
- W2778392279 hasConceptScore W2778392279C121332964 @default.
- W2778392279 hasConceptScore W2778392279C1276947 @default.
- W2778392279 hasConceptScore W2778392279C138268822 @default.
- W2778392279 hasConceptScore W2778392279C138885662 @default.
- W2778392279 hasConceptScore W2778392279C139945424 @default.