Matches in SemOpenAlex for { <https://semopenalex.org/work/W2778669085> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2778669085 abstract "Automatic Plate Number Recognition (APNR) has important applications in traffic surveillance, toll booth, protected parking lot, No parking zone, etc. It is a challenging problem, especially when the license plates have varying sizes, the number of lines, fonts, background diversity etc. This work aims to address APNR using deep learning method for real-time traffic images. We first extract license plate candidates from each frame using edge information and geometrical properties, ensuring high recall using one class SVM. The verified candidates are used for NP recognition purpose along with a spatial transformer network (STN) for character recognition. Our system is evaluated on several traffic images with vehicles having different license plate formats in terms of tilt, distances, colors, illumination, character size, thickness etc. Also, the background was very challenging. Results demonstrate robustness to such variations and impressive performance in both the localization and recognition." @default.
- W2778669085 created "2018-01-05" @default.
- W2778669085 creator A5010194333 @default.
- W2778669085 creator A5027433743 @default.
- W2778669085 creator A5032287649 @default.
- W2778669085 date "2017-11-24" @default.
- W2778669085 modified "2023-09-24" @default.
- W2778669085 title "A-PNR" @default.
- W2778669085 cites W2106073265 @default.
- W2778669085 cites W2128998325 @default.
- W2778669085 cites W2143386126 @default.
- W2778669085 cites W2155893237 @default.
- W2778669085 cites W2346262547 @default.
- W2778669085 cites W2546828478 @default.
- W2778669085 cites W2562308138 @default.
- W2778669085 doi "https://doi.org/10.1145/3154979.3154999" @default.
- W2778669085 hasPublicationYear "2017" @default.
- W2778669085 type Work @default.
- W2778669085 sameAs 2778669085 @default.
- W2778669085 citedByCount "9" @default.
- W2778669085 countsByYear W27786690852020 @default.
- W2778669085 countsByYear W27786690852021 @default.
- W2778669085 countsByYear W27786690852022 @default.
- W2778669085 countsByYear W27786690852023 @default.
- W2778669085 crossrefType "proceedings-article" @default.
- W2778669085 hasAuthorship W2778669085A5010194333 @default.
- W2778669085 hasAuthorship W2778669085A5027433743 @default.
- W2778669085 hasAuthorship W2778669085A5032287649 @default.
- W2778669085 hasConcept C104317684 @default.
- W2778669085 hasConcept C111919701 @default.
- W2778669085 hasConcept C115961682 @default.
- W2778669085 hasConcept C119599485 @default.
- W2778669085 hasConcept C12267149 @default.
- W2778669085 hasConcept C127413603 @default.
- W2778669085 hasConcept C153180895 @default.
- W2778669085 hasConcept C154945302 @default.
- W2778669085 hasConcept C165801399 @default.
- W2778669085 hasConcept C185592680 @default.
- W2778669085 hasConcept C2780560020 @default.
- W2778669085 hasConcept C2987247673 @default.
- W2778669085 hasConcept C31972630 @default.
- W2778669085 hasConcept C41008148 @default.
- W2778669085 hasConcept C52622490 @default.
- W2778669085 hasConcept C55493867 @default.
- W2778669085 hasConcept C63479239 @default.
- W2778669085 hasConcept C66322947 @default.
- W2778669085 hasConceptScore W2778669085C104317684 @default.
- W2778669085 hasConceptScore W2778669085C111919701 @default.
- W2778669085 hasConceptScore W2778669085C115961682 @default.
- W2778669085 hasConceptScore W2778669085C119599485 @default.
- W2778669085 hasConceptScore W2778669085C12267149 @default.
- W2778669085 hasConceptScore W2778669085C127413603 @default.
- W2778669085 hasConceptScore W2778669085C153180895 @default.
- W2778669085 hasConceptScore W2778669085C154945302 @default.
- W2778669085 hasConceptScore W2778669085C165801399 @default.
- W2778669085 hasConceptScore W2778669085C185592680 @default.
- W2778669085 hasConceptScore W2778669085C2780560020 @default.
- W2778669085 hasConceptScore W2778669085C2987247673 @default.
- W2778669085 hasConceptScore W2778669085C31972630 @default.
- W2778669085 hasConceptScore W2778669085C41008148 @default.
- W2778669085 hasConceptScore W2778669085C52622490 @default.
- W2778669085 hasConceptScore W2778669085C55493867 @default.
- W2778669085 hasConceptScore W2778669085C63479239 @default.
- W2778669085 hasConceptScore W2778669085C66322947 @default.
- W2778669085 hasLocation W27786690851 @default.
- W2778669085 hasOpenAccess W2778669085 @default.
- W2778669085 hasPrimaryLocation W27786690851 @default.
- W2778669085 hasRelatedWork W2035976912 @default.
- W2778669085 hasRelatedWork W2136184105 @default.
- W2778669085 hasRelatedWork W2167335035 @default.
- W2778669085 hasRelatedWork W2336974148 @default.
- W2778669085 hasRelatedWork W2541791370 @default.
- W2778669085 hasRelatedWork W3013515612 @default.
- W2778669085 hasRelatedWork W3094187672 @default.
- W2778669085 hasRelatedWork W3096162641 @default.
- W2778669085 hasRelatedWork W2187500075 @default.
- W2778669085 hasRelatedWork W2345184372 @default.
- W2778669085 isParatext "false" @default.
- W2778669085 isRetracted "false" @default.
- W2778669085 magId "2778669085" @default.
- W2778669085 workType "article" @default.