Matches in SemOpenAlex for { <https://semopenalex.org/work/W2778836719> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2778836719 abstract "Osteopathy in thalassemia is a very heterogeneous condition; severity depends on multiple factors, interacting through nonlinear mechanisms. Classic statistics have limitations when applied to the study of such highly complex relationships. Currently, an alternative approach of analysis is represented by the artificial neural networks (ANNs), powerful mathematical tools, increasingly applied to analyze multifactorial databases, as considered more appropriate than classic statistics. We adopted this specialized mathematical method to 76 thalassemia major (TM) patients. In all of them dual energy X-ray absorptiometry (DXA) was performed to measure bone mineral density, and two recent developments were included: trabecular bone score, evaluating bone microarchitecture, and hip structural analysis, evaluating hip geometry. The relationships between bone status and endocrine, hematologic, and clinical parameters were investigated. Using a particular ANN (Auto Contractive Map algorithm), the strength of inter-variable association was defined and a connectivity map generated, visually representing the main connections among the entered variables. Iron status indices (ferritin, liver iron concentration) emerged as the most important variables, dividing the map into two sectors, with parameters indicating satisfactory bone condition in the upper, those indicating poor condition in the lower, near the variable “fractures”. The Auto Contractive Map highlighted the key role of bone quantity, bone geometry, and microarchitecture in defining thalassemic bone condition. Among numerous available indices, high femoral bone mineral density and low cross-sectional moment of inertia emerged as the gold standard to classify thalassemic patients for prognostic and therapeutic purposes." @default.
- W2778836719 created "2018-01-05" @default.
- W2778836719 creator A5007430894 @default.
- W2778836719 creator A5014099826 @default.
- W2778836719 creator A5024806573 @default.
- W2778836719 creator A5025423978 @default.
- W2778836719 creator A5039015290 @default.
- W2778836719 creator A5058078318 @default.
- W2778836719 creator A5059601501 @default.
- W2778836719 creator A5082633427 @default.
- W2778836719 creator A5082981220 @default.
- W2778836719 date "2017-01-01" @default.
- W2778836719 modified "2023-10-18" @default.
- W2778836719 title "The Role of Trabecular Bone Score and Hip Geometry in Thalassemia Major: A Neural Network Analysis" @default.
- W2778836719 doi "https://doi.org/10.21767/2394-3718.100025" @default.
- W2778836719 hasPublicationYear "2017" @default.
- W2778836719 type Work @default.
- W2778836719 sameAs 2778836719 @default.
- W2778836719 citedByCount "1" @default.
- W2778836719 countsByYear W27788367192021 @default.
- W2778836719 crossrefType "journal-article" @default.
- W2778836719 hasAuthorship W2778836719A5007430894 @default.
- W2778836719 hasAuthorship W2778836719A5014099826 @default.
- W2778836719 hasAuthorship W2778836719A5024806573 @default.
- W2778836719 hasAuthorship W2778836719A5025423978 @default.
- W2778836719 hasAuthorship W2778836719A5039015290 @default.
- W2778836719 hasAuthorship W2778836719A5058078318 @default.
- W2778836719 hasAuthorship W2778836719A5059601501 @default.
- W2778836719 hasAuthorship W2778836719A5082633427 @default.
- W2778836719 hasAuthorship W2778836719A5082981220 @default.
- W2778836719 hasBestOaLocation W27788367191 @default.
- W2778836719 hasConcept C105795698 @default.
- W2778836719 hasConcept C126322002 @default.
- W2778836719 hasConcept C153180895 @default.
- W2778836719 hasConcept C154945302 @default.
- W2778836719 hasConcept C2776541429 @default.
- W2778836719 hasConcept C2776886416 @default.
- W2778836719 hasConcept C2777799968 @default.
- W2778836719 hasConcept C29694066 @default.
- W2778836719 hasConcept C33923547 @default.
- W2778836719 hasConcept C41008148 @default.
- W2778836719 hasConcept C50644808 @default.
- W2778836719 hasConcept C71924100 @default.
- W2778836719 hasConceptScore W2778836719C105795698 @default.
- W2778836719 hasConceptScore W2778836719C126322002 @default.
- W2778836719 hasConceptScore W2778836719C153180895 @default.
- W2778836719 hasConceptScore W2778836719C154945302 @default.
- W2778836719 hasConceptScore W2778836719C2776541429 @default.
- W2778836719 hasConceptScore W2778836719C2776886416 @default.
- W2778836719 hasConceptScore W2778836719C2777799968 @default.
- W2778836719 hasConceptScore W2778836719C29694066 @default.
- W2778836719 hasConceptScore W2778836719C33923547 @default.
- W2778836719 hasConceptScore W2778836719C41008148 @default.
- W2778836719 hasConceptScore W2778836719C50644808 @default.
- W2778836719 hasConceptScore W2778836719C71924100 @default.
- W2778836719 hasIssue "04" @default.
- W2778836719 hasLocation W27788367191 @default.
- W2778836719 hasOpenAccess W2778836719 @default.
- W2778836719 hasPrimaryLocation W27788367191 @default.
- W2778836719 hasRelatedWork W2001759056 @default.
- W2778836719 hasRelatedWork W2007271258 @default.
- W2778836719 hasRelatedWork W2054324495 @default.
- W2778836719 hasRelatedWork W2124759057 @default.
- W2778836719 hasRelatedWork W2358157500 @default.
- W2778836719 hasRelatedWork W2748952813 @default.
- W2778836719 hasRelatedWork W2799378302 @default.
- W2778836719 hasRelatedWork W2899084033 @default.
- W2778836719 hasRelatedWork W3148103823 @default.
- W2778836719 hasRelatedWork W2183146167 @default.
- W2778836719 hasVolume "04" @default.
- W2778836719 isParatext "false" @default.
- W2778836719 isRetracted "false" @default.
- W2778836719 magId "2778836719" @default.
- W2778836719 workType "article" @default.