Matches in SemOpenAlex for { <https://semopenalex.org/work/W2779149424> ?p ?o ?g. }
- W2779149424 abstract "Mars Express (MEX) has been orbiting Mars, generating great science for over 13 years. The aging spacecraft faces challenges; eclipse seasons are getting longer, eclipse durations are increasing and battery degradation is worsening. Accurate power modelling, respecting the power budget, becomes more vital as this ensures MEX health and maximum science. Empirical thermal power models provide reliable long term predictions but lack sensitivity. Telemetry data accumulated during the mission is a rich information source from which to derive a new model. This paper shows how the MEX Flight Control Team released 3 Martian years of data and reached out to Machine Learning (ML) enthusiasts asking them to predict a fourth year of spacecraft telemetry. In return, the participants were invited to an open data day to meet the MEX operators, tour ESA and find out about many exciting missions, and present and share their solutions with other candidates and ESA staff members. But the reward of solving a complex challenge, in a novel environment for space application, lead an incredible response from the worldwide ML community. Using open source solutions, candidates built data-driven models which have been able to predict the power consumption of 33 thermal lines, every hour, over a full Martian year (687 Earth days). These models improve sensitivity and accuracy by an order of magnitude. The number of scientific observations may increase even during power constrained periods when incorporating such models into MEX mission planning. By releasing spacecraft data and engaging with ML communities, ESA has gained a novel means to better exploit spacecraftresources, increase scientific return, and so, prolong mission life." @default.
- W2779149424 created "2018-01-05" @default.
- W2779149424 creator A5063597033 @default.
- W2779149424 creator A5071929395 @default.
- W2779149424 date "2017-09-01" @default.
- W2779149424 modified "2023-10-03" @default.
- W2779149424 title "Machine Learning for Spacecraft Operations Support - The Mars Express Power Challenge" @default.
- W2779149424 cites W1977627101 @default.
- W2779149424 cites W2012533078 @default.
- W2779149424 cites W2036599383 @default.
- W2779149424 cites W2056132907 @default.
- W2779149424 cites W2077072541 @default.
- W2779149424 cites W2101234009 @default.
- W2779149424 cites W2109042184 @default.
- W2779149424 cites W2125318369 @default.
- W2779149424 cites W2136848157 @default.
- W2779149424 cites W2137219016 @default.
- W2779149424 cites W2306706380 @default.
- W2779149424 cites W2342249984 @default.
- W2779149424 cites W2539792571 @default.
- W2779149424 cites W2911964244 @default.
- W2779149424 cites W2963749793 @default.
- W2779149424 cites W3102476541 @default.
- W2779149424 doi "https://doi.org/10.1109/smc-it.2017.21" @default.
- W2779149424 hasPublicationYear "2017" @default.
- W2779149424 type Work @default.
- W2779149424 sameAs 2779149424 @default.
- W2779149424 citedByCount "16" @default.
- W2779149424 countsByYear W27791494242017 @default.
- W2779149424 countsByYear W27791494242018 @default.
- W2779149424 countsByYear W27791494242019 @default.
- W2779149424 countsByYear W27791494242021 @default.
- W2779149424 countsByYear W27791494242022 @default.
- W2779149424 countsByYear W27791494242023 @default.
- W2779149424 crossrefType "proceedings-article" @default.
- W2779149424 hasAuthorship W2779149424A5063597033 @default.
- W2779149424 hasAuthorship W2779149424A5071929395 @default.
- W2779149424 hasConcept C104060986 @default.
- W2779149424 hasConcept C121332964 @default.
- W2779149424 hasConcept C127413603 @default.
- W2779149424 hasConcept C1276947 @default.
- W2779149424 hasConcept C146978453 @default.
- W2779149424 hasConcept C163258240 @default.
- W2779149424 hasConcept C183121708 @default.
- W2779149424 hasConcept C187107819 @default.
- W2779149424 hasConcept C25761169 @default.
- W2779149424 hasConcept C2778505590 @default.
- W2779149424 hasConcept C2778600265 @default.
- W2779149424 hasConcept C29829512 @default.
- W2779149424 hasConcept C39432304 @default.
- W2779149424 hasConcept C41008148 @default.
- W2779149424 hasConcept C45095769 @default.
- W2779149424 hasConcept C62520636 @default.
- W2779149424 hasConcept C68702407 @default.
- W2779149424 hasConcept C76155785 @default.
- W2779149424 hasConcept C78949437 @default.
- W2779149424 hasConcept C83260615 @default.
- W2779149424 hasConcept C87355193 @default.
- W2779149424 hasConceptScore W2779149424C104060986 @default.
- W2779149424 hasConceptScore W2779149424C121332964 @default.
- W2779149424 hasConceptScore W2779149424C127413603 @default.
- W2779149424 hasConceptScore W2779149424C1276947 @default.
- W2779149424 hasConceptScore W2779149424C146978453 @default.
- W2779149424 hasConceptScore W2779149424C163258240 @default.
- W2779149424 hasConceptScore W2779149424C183121708 @default.
- W2779149424 hasConceptScore W2779149424C187107819 @default.
- W2779149424 hasConceptScore W2779149424C25761169 @default.
- W2779149424 hasConceptScore W2779149424C2778505590 @default.
- W2779149424 hasConceptScore W2779149424C2778600265 @default.
- W2779149424 hasConceptScore W2779149424C29829512 @default.
- W2779149424 hasConceptScore W2779149424C39432304 @default.
- W2779149424 hasConceptScore W2779149424C41008148 @default.
- W2779149424 hasConceptScore W2779149424C45095769 @default.
- W2779149424 hasConceptScore W2779149424C62520636 @default.
- W2779149424 hasConceptScore W2779149424C68702407 @default.
- W2779149424 hasConceptScore W2779149424C76155785 @default.
- W2779149424 hasConceptScore W2779149424C78949437 @default.
- W2779149424 hasConceptScore W2779149424C83260615 @default.
- W2779149424 hasConceptScore W2779149424C87355193 @default.
- W2779149424 hasLocation W27791494241 @default.
- W2779149424 hasOpenAccess W2779149424 @default.
- W2779149424 hasPrimaryLocation W27791494241 @default.
- W2779149424 hasRelatedWork W1595251536 @default.
- W2779149424 hasRelatedWork W1991233065 @default.
- W2779149424 hasRelatedWork W2009985472 @default.
- W2779149424 hasRelatedWork W2035328793 @default.
- W2779149424 hasRelatedWork W2050067380 @default.
- W2779149424 hasRelatedWork W2070344998 @default.
- W2779149424 hasRelatedWork W2118004486 @default.
- W2779149424 hasRelatedWork W2133999255 @default.
- W2779149424 hasRelatedWork W2258550916 @default.
- W2779149424 hasRelatedWork W2315046777 @default.
- W2779149424 hasRelatedWork W2320944431 @default.
- W2779149424 hasRelatedWork W2332937988 @default.
- W2779149424 hasRelatedWork W2385369532 @default.
- W2779149424 hasRelatedWork W2562120985 @default.
- W2779149424 hasRelatedWork W2777581776 @default.
- W2779149424 hasRelatedWork W2905152253 @default.
- W2779149424 hasRelatedWork W2911964244 @default.
- W2779149424 hasRelatedWork W3080223575 @default.