Matches in SemOpenAlex for { <https://semopenalex.org/work/W2779187822> ?p ?o ?g. }
- W2779187822 endingPage "2002" @default.
- W2779187822 startingPage "1986" @default.
- W2779187822 abstract "Backprojection imaging has recently become a practical method for local earthquake detection and location due to the deployment of densely sampled, continuously recorded, local seismograph arrays. While backprojection sometimes utilizes the full seismic waveform, the waveforms are often pre-processed and simplified to overcome imaging challenges. Real data issues include aliased station spacing, inadequate array aperture, inaccurate velocity model, low signal-to-noise ratio, large noise bursts and varying waveform polarity. We compare the performance of backprojection with four previously used data pre-processing methods: raw waveform, envelope, short-term averaging/long-term averaging and kurtosis. Our primary goal is to detect and locate events smaller than noise by stacking prior to detection to improve the signal-to-noise ratio. The objective is to identify an optimized strategy for automated imaging that is robust in the presence of real-data issues, has the lowest signal-to-noise thresholds for detection and for location, has the best spatial resolution of the source images, preserves magnitude, and considers computational cost. Imaging method performance is assessed using a real aftershock data set recorded by the dense AIDA array following the 2011 Virginia earthquake. Our comparisons show that raw-waveform backprojection provides the best spatial resolution, preserves magnitude and boosts signal to detect events smaller than noise, but is most sensitive to velocity error, polarity error and noise bursts. On the other hand, the other methods avoid polarity error and reduce sensitivity to velocity error, but sacrifice spatial resolution and cannot effectively reduce noise by stacking. Of these, only kurtosis is insensitive to large noise bursts while being as efficient as the raw-waveform method to lower the detection threshold; however, it does not preserve the magnitude information. For automatic detection and location of events in a large data set, we therefore recommend backprojecting kurtosis waveforms, followed by a second pass on the detected events using noise-filtered raw waveforms to achieve the best of all criteria." @default.
- W2779187822 created "2018-01-05" @default.
- W2779187822 creator A5002934316 @default.
- W2779187822 creator A5038685162 @default.
- W2779187822 creator A5045163998 @default.
- W2779187822 creator A5047822689 @default.
- W2779187822 creator A5068070664 @default.
- W2779187822 creator A5071013057 @default.
- W2779187822 creator A5073845519 @default.
- W2779187822 creator A5086522965 @default.
- W2779187822 creator A5087718831 @default.
- W2779187822 date "2017-12-20" @default.
- W2779187822 modified "2023-10-14" @default.
- W2779187822 title "A comparison of earthquake backprojection imaging methods for dense local arrays" @default.
- W2779187822 cites W1524415387 @default.
- W2779187822 cites W1553790841 @default.
- W2779187822 cites W1566401598 @default.
- W2779187822 cites W1582654070 @default.
- W2779187822 cites W1788230743 @default.
- W2779187822 cites W1919412779 @default.
- W2779187822 cites W1940418797 @default.
- W2779187822 cites W1944879650 @default.
- W2779187822 cites W1970333790 @default.
- W2779187822 cites W1991606956 @default.
- W2779187822 cites W1994329571 @default.
- W2779187822 cites W2008341810 @default.
- W2779187822 cites W2014782452 @default.
- W2779187822 cites W2015975689 @default.
- W2779187822 cites W2017399519 @default.
- W2779187822 cites W2026024577 @default.
- W2779187822 cites W2028005832 @default.
- W2779187822 cites W2041385194 @default.
- W2779187822 cites W2044804449 @default.
- W2779187822 cites W2048904365 @default.
- W2779187822 cites W2076211048 @default.
- W2779187822 cites W2081082344 @default.
- W2779187822 cites W2084420727 @default.
- W2779187822 cites W2087189451 @default.
- W2779187822 cites W2099857446 @default.
- W2779187822 cites W2103921937 @default.
- W2779187822 cites W2106148868 @default.
- W2779187822 cites W2107957704 @default.
- W2779187822 cites W2108241615 @default.
- W2779187822 cites W2108309279 @default.
- W2779187822 cites W2114220837 @default.
- W2779187822 cites W2115452148 @default.
- W2779187822 cites W2119749963 @default.
- W2779187822 cites W2125773717 @default.
- W2779187822 cites W2132547391 @default.
- W2779187822 cites W2132646742 @default.
- W2779187822 cites W2137972163 @default.
- W2779187822 cites W2139661095 @default.
- W2779187822 cites W2145478450 @default.
- W2779187822 cites W2145693114 @default.
- W2779187822 cites W2148681139 @default.
- W2779187822 cites W2156568865 @default.
- W2779187822 cites W2161761720 @default.
- W2779187822 cites W2166423844 @default.
- W2779187822 cites W2246220850 @default.
- W2779187822 cites W2278399961 @default.
- W2779187822 cites W2291624764 @default.
- W2779187822 cites W2318814030 @default.
- W2779187822 cites W2320121865 @default.
- W2779187822 cites W2341324667 @default.
- W2779187822 cites W2528961483 @default.
- W2779187822 cites W2537682053 @default.
- W2779187822 cites W2554361163 @default.
- W2779187822 cites W2603267465 @default.
- W2779187822 cites W2769329820 @default.
- W2779187822 cites W4232246305 @default.
- W2779187822 cites W4251658380 @default.
- W2779187822 cites W623761935 @default.
- W2779187822 doi "https://doi.org/10.1093/gji/ggx520" @default.
- W2779187822 hasPublicationYear "2017" @default.
- W2779187822 type Work @default.
- W2779187822 sameAs 2779187822 @default.
- W2779187822 citedByCount "19" @default.
- W2779187822 countsByYear W27791878222018 @default.
- W2779187822 countsByYear W27791878222019 @default.
- W2779187822 countsByYear W27791878222020 @default.
- W2779187822 countsByYear W27791878222021 @default.
- W2779187822 countsByYear W27791878222022 @default.
- W2779187822 crossrefType "journal-article" @default.
- W2779187822 hasAuthorship W2779187822A5002934316 @default.
- W2779187822 hasAuthorship W2779187822A5038685162 @default.
- W2779187822 hasAuthorship W2779187822A5045163998 @default.
- W2779187822 hasAuthorship W2779187822A5047822689 @default.
- W2779187822 hasAuthorship W2779187822A5068070664 @default.
- W2779187822 hasAuthorship W2779187822A5071013057 @default.
- W2779187822 hasAuthorship W2779187822A5073845519 @default.
- W2779187822 hasAuthorship W2779187822A5086522965 @default.
- W2779187822 hasAuthorship W2779187822A5087718831 @default.
- W2779187822 hasBestOaLocation W27791878222 @default.
- W2779187822 hasConcept C115961682 @default.
- W2779187822 hasConcept C127313418 @default.
- W2779187822 hasConcept C127413603 @default.
- W2779187822 hasConcept C13944312 @default.
- W2779187822 hasConcept C154945302 @default.