Matches in SemOpenAlex for { <https://semopenalex.org/work/W2779215644> ?p ?o ?g. }
Showing items 1 to 45 of
45
with 100 items per page.
- W2779215644 endingPage "405" @default.
- W2779215644 startingPage "373" @default.
- W2779215644 abstract "Money makes the world go round and in the current ecosystem of data intensive business practices, it is safe to claim that data also makes the world go round. A very important skill set for data scientists is to match the technical aspects of analytics with its business value, i.e., its monetary value. This can be done in a variety of ways and is very much dependent on the type of business and the data available. In the earlier chapters, we covered problems that can be framed as business problems (leveraging the CRISP-DM model) and linked to revenue generation. In this chapter we will directly focus on two very important problems that can directly have a positive impact on the revenue streams of businesses and establishments particularly from the retail domain. This chapter is also unique in the way that we address a different paradigm of Machine Learning algorithm altogether, focusing more on tasks pertaining to pattern recognition and unsupervised learning." @default.
- W2779215644 created "2018-01-05" @default.
- W2779215644 creator A5013448248 @default.
- W2779215644 creator A5037419104 @default.
- W2779215644 creator A5056843687 @default.
- W2779215644 date "2017-12-22" @default.
- W2779215644 modified "2023-09-25" @default.
- W2779215644 title "Customer Segmentation and Effective Cross Selling" @default.
- W2779215644 doi "https://doi.org/10.1007/978-1-4842-3207-1_8" @default.
- W2779215644 hasPublicationYear "2017" @default.
- W2779215644 type Work @default.
- W2779215644 sameAs 2779215644 @default.
- W2779215644 citedByCount "1" @default.
- W2779215644 countsByYear W27792156442022 @default.
- W2779215644 crossrefType "book-chapter" @default.
- W2779215644 hasAuthorship W2779215644A5013448248 @default.
- W2779215644 hasAuthorship W2779215644A5037419104 @default.
- W2779215644 hasAuthorship W2779215644A5056843687 @default.
- W2779215644 hasConcept C112698675 @default.
- W2779215644 hasConcept C144133560 @default.
- W2779215644 hasConcept C162853370 @default.
- W2779215644 hasConcept C41008148 @default.
- W2779215644 hasConceptScore W2779215644C112698675 @default.
- W2779215644 hasConceptScore W2779215644C144133560 @default.
- W2779215644 hasConceptScore W2779215644C162853370 @default.
- W2779215644 hasConceptScore W2779215644C41008148 @default.
- W2779215644 hasLocation W27792156441 @default.
- W2779215644 hasOpenAccess W2779215644 @default.
- W2779215644 hasPrimaryLocation W27792156441 @default.
- W2779215644 hasRelatedWork W1925467114 @default.
- W2779215644 hasRelatedWork W1978505276 @default.
- W2779215644 hasRelatedWork W1985655604 @default.
- W2779215644 hasRelatedWork W2032089935 @default.
- W2779215644 hasRelatedWork W2046251599 @default.
- W2779215644 hasRelatedWork W2120879676 @default.
- W2779215644 hasRelatedWork W2136710333 @default.
- W2779215644 hasRelatedWork W2187644337 @default.
- W2779215644 hasRelatedWork W3132716659 @default.
- W2779215644 hasRelatedWork W4206036160 @default.
- W2779215644 isParatext "false" @default.
- W2779215644 isRetracted "false" @default.
- W2779215644 magId "2779215644" @default.
- W2779215644 workType "book-chapter" @default.