Matches in SemOpenAlex for { <https://semopenalex.org/work/W2779307118> ?p ?o ?g. }
- W2779307118 endingPage "905" @default.
- W2779307118 startingPage "881" @default.
- W2779307118 abstract "Agricultural activity plays a significant role in the atmospheric carbon balance as a source and sink of greenhouse gases (GHGs) and has high mitigation potential. The agricultural emissions display evident geographical differences in the regional, national, and even local levels, not only due to spatially differentiated activity, but also due to very geographically different emission coefficients. Thus, spatially resolved inventories are important for obtaining better estimates of emission content and design of GHG mitigation processes to adapt to global carbon rise in the atmosphere. This study develops a geoinformation approach to a high-resolution spatial inventory of GHG emissions from the agricultural sector, following the categories of the United Nations Intergovernmental Panel on Climate Change guidelines. Using the Corine Land Cover data, a digital map of emission sources is built, with elementary areal objects that are split up by administrative boundaries. Various procedures are developed for disaggregation of available emission activity data down to a level of elementary emission objects, conditional on covariate information, such as land use, observable in the elementary object scale. Among them, a statistical scaling method suitable for spatially correlated areal emission sources is applied. As an example of implementation of this approach, the spatial distribution of methane (CH4) and Nitrogen Oxide (N2O) emissions was obtained for areal emission sources in the agriculture sector in Poland with a spatial resolution of 100 m. We calculated the specific total emissions for different types of animal and manure systems as well as the total emissions in CO2-equivalent. We demonstrated that the emission sources are located highly nonuniformly and the emissions from them vary substantially, so that average data may provide insufficient approximation. In our case, over 11% smaller emission was estimated using spatial approach as compared with the national inventory report where average data were used. In addition, we quantified uncertainties associated with the developed spatial inventory and analysed the dominant components in total emission uncertainties in the agriculture sector. We used the activity data from the lowest possible (municipal) level. The depth of disaggregation of these data to the level of arable lands is minimal, and hence, the relative uncertainty of spatial inventory is smaller when comparing with traditional gridded emissions. The proposed technique allows us to discuss factors driving the geographical distribution of GHG emissions for different categories of the agricultural sector. This may be particularly useful in high-resolution modelling of GHG dispersion in the atmosphere." @default.
- W2779307118 created "2018-01-05" @default.
- W2779307118 creator A5016531914 @default.
- W2779307118 creator A5024081343 @default.
- W2779307118 creator A5044247462 @default.
- W2779307118 creator A5047102170 @default.
- W2779307118 creator A5052854135 @default.
- W2779307118 creator A5058874663 @default.
- W2779307118 creator A5072778953 @default.
- W2779307118 date "2018-01-11" @default.
- W2779307118 modified "2023-10-01" @default.
- W2779307118 title "High-resolution spatial distribution and associated uncertainties of greenhouse gas emissions from the agricultural sector" @default.
- W2779307118 cites W1969248251 @default.
- W2779307118 cites W2014634919 @default.
- W2779307118 cites W2024941744 @default.
- W2779307118 cites W2027483368 @default.
- W2779307118 cites W2040123545 @default.
- W2779307118 cites W2042248233 @default.
- W2779307118 cites W2050369325 @default.
- W2779307118 cites W2052611170 @default.
- W2779307118 cites W2060650912 @default.
- W2779307118 cites W2070181088 @default.
- W2779307118 cites W2090906871 @default.
- W2779307118 cites W2093693868 @default.
- W2779307118 cites W2110437438 @default.
- W2779307118 cites W2116881729 @default.
- W2779307118 cites W2119642490 @default.
- W2779307118 cites W2126135876 @default.
- W2779307118 cites W2135789269 @default.
- W2779307118 cites W2136596893 @default.
- W2779307118 cites W2149362589 @default.
- W2779307118 cites W2150213812 @default.
- W2779307118 cites W2158525247 @default.
- W2779307118 cites W2158765373 @default.
- W2779307118 cites W2195584797 @default.
- W2779307118 cites W2227280755 @default.
- W2779307118 cites W2291282024 @default.
- W2779307118 cites W2301037687 @default.
- W2779307118 cites W2310489833 @default.
- W2779307118 cites W2398589445 @default.
- W2779307118 cites W2402690890 @default.
- W2779307118 cites W2619531659 @default.
- W2779307118 cites W2756745753 @default.
- W2779307118 cites W2788441899 @default.
- W2779307118 cites W2799536347 @default.
- W2779307118 cites W4253043825 @default.
- W2779307118 cites W769097487 @default.
- W2779307118 doi "https://doi.org/10.1007/s11027-017-9779-3" @default.
- W2779307118 hasPublicationYear "2018" @default.
- W2779307118 type Work @default.
- W2779307118 sameAs 2779307118 @default.
- W2779307118 citedByCount "22" @default.
- W2779307118 countsByYear W27793071182018 @default.
- W2779307118 countsByYear W27793071182019 @default.
- W2779307118 countsByYear W27793071182020 @default.
- W2779307118 countsByYear W27793071182021 @default.
- W2779307118 countsByYear W27793071182022 @default.
- W2779307118 countsByYear W27793071182023 @default.
- W2779307118 crossrefType "journal-article" @default.
- W2779307118 hasAuthorship W2779307118A5016531914 @default.
- W2779307118 hasAuthorship W2779307118A5024081343 @default.
- W2779307118 hasAuthorship W2779307118A5044247462 @default.
- W2779307118 hasAuthorship W2779307118A5047102170 @default.
- W2779307118 hasAuthorship W2779307118A5052854135 @default.
- W2779307118 hasAuthorship W2779307118A5058874663 @default.
- W2779307118 hasAuthorship W2779307118A5072778953 @default.
- W2779307118 hasBestOaLocation W27793071181 @default.
- W2779307118 hasConcept C118518473 @default.
- W2779307118 hasConcept C126314574 @default.
- W2779307118 hasConcept C127313418 @default.
- W2779307118 hasConcept C132651083 @default.
- W2779307118 hasConcept C153294291 @default.
- W2779307118 hasConcept C159620131 @default.
- W2779307118 hasConcept C166957645 @default.
- W2779307118 hasConcept C18903297 @default.
- W2779307118 hasConcept C205649164 @default.
- W2779307118 hasConcept C2776720842 @default.
- W2779307118 hasConcept C2777016058 @default.
- W2779307118 hasConcept C39432304 @default.
- W2779307118 hasConcept C47737302 @default.
- W2779307118 hasConcept C502990516 @default.
- W2779307118 hasConcept C62649853 @default.
- W2779307118 hasConcept C86803240 @default.
- W2779307118 hasConcept C91586092 @default.
- W2779307118 hasConceptScore W2779307118C118518473 @default.
- W2779307118 hasConceptScore W2779307118C126314574 @default.
- W2779307118 hasConceptScore W2779307118C127313418 @default.
- W2779307118 hasConceptScore W2779307118C132651083 @default.
- W2779307118 hasConceptScore W2779307118C153294291 @default.
- W2779307118 hasConceptScore W2779307118C159620131 @default.
- W2779307118 hasConceptScore W2779307118C166957645 @default.
- W2779307118 hasConceptScore W2779307118C18903297 @default.
- W2779307118 hasConceptScore W2779307118C205649164 @default.
- W2779307118 hasConceptScore W2779307118C2776720842 @default.
- W2779307118 hasConceptScore W2779307118C2777016058 @default.
- W2779307118 hasConceptScore W2779307118C39432304 @default.
- W2779307118 hasConceptScore W2779307118C47737302 @default.
- W2779307118 hasConceptScore W2779307118C502990516 @default.