Matches in SemOpenAlex for { <https://semopenalex.org/work/W2779598520> ?p ?o ?g. }
- W2779598520 abstract "Nanofabrication is state of the art technology. Various chemical, mechanical, biochemical and semiconductor products have characteristics controlled by the nanostructures of the surface and interphase. Surface microscopic imaging is generally used to capture different surface features. By properly analyzing the surface image, valuable information regarding manufacturing process and product performance can be extracted. While microscopy measurements can offer very accurate qualitative information about surface features, for many applications, it is critical to obtain a quantitative description of the surface morphology. Various statistical features can be used to characterize the surface in quantitative way. Such an analysis can be done by the multi-resolution capabilities of wavelet transforms (WT). A multi-scale molecular simulation can help to investigate the physical and chemical mechanism in manufacturing process. Multiresolution characterization was performed on the model structure to compare with image analysis. In our research, we have used a soft polymeric surface used in microfabrication application and a hard surface used for catalysis, and applied multiresolution characterization for surface feature extraction and multiscale modeling for optimizing system variables to get desired surface characteristics. In microfabrication, the efficiency of the product reduced by line-edge roughness (LER) created on the polymer surface. Off-line LER characterization is usually based on the top-down SEM image. We have shown a wavelet based segmentation method for edge searching region. There was no external decision involved in the wavelet based edge detection and characterization. Ab-initio atomistic based simulations are generally used for polymer material design in atomic scale. For mesoscale modeling we use the coarse graining of the molecules and use the Flory-Huggins mean field interaction parameters of the clusters of atoms or molecules obtained from ab-initio simulations. In our research we have used coarse grained lattice based important sampling Monte Carlo (MC) and kinetic Monte Carlo (kMC) methods for mesoscale simulation. We have identified the phase separation by spinodal decomposition resulting in the formation of LER. The kinetics of the process is found and the process variables are identified that can reduce the roughness. Surface of a transition metal have been analyzed in a similar way for enhanced catalytic performance." @default.
- W2779598520 created "2018-01-05" @default.
- W2779598520 creator A5069201232 @default.
- W2779598520 date "2022-06-10" @default.
- W2779598520 modified "2023-10-15" @default.
- W2779598520 title "Modeling and multiresolution characterization of micro/nano surface for novel tailored nanostructures" @default.
- W2779598520 cites W1480707777 @default.
- W2779598520 cites W1537257828 @default.
- W2779598520 cites W1553084654 @default.
- W2779598520 cites W1598252020 @default.
- W2779598520 cites W1602499823 @default.
- W2779598520 cites W1733449697 @default.
- W2779598520 cites W1956541390 @default.
- W2779598520 cites W1967419288 @default.
- W2779598520 cites W1969705753 @default.
- W2779598520 cites W1975916320 @default.
- W2779598520 cites W1981391898 @default.
- W2779598520 cites W1981577823 @default.
- W2779598520 cites W1989986682 @default.
- W2779598520 cites W1990232846 @default.
- W2779598520 cites W1999909377 @default.
- W2779598520 cites W2001768288 @default.
- W2779598520 cites W2002747530 @default.
- W2779598520 cites W2005094129 @default.
- W2779598520 cites W2007453206 @default.
- W2779598520 cites W2010334127 @default.
- W2779598520 cites W2012993698 @default.
- W2779598520 cites W2013847948 @default.
- W2779598520 cites W2013979082 @default.
- W2779598520 cites W2014083559 @default.
- W2779598520 cites W2014209819 @default.
- W2779598520 cites W2016762652 @default.
- W2779598520 cites W2019031601 @default.
- W2779598520 cites W2019209360 @default.
- W2779598520 cites W2020468637 @default.
- W2779598520 cites W2026427917 @default.
- W2779598520 cites W2028778704 @default.
- W2779598520 cites W2029797766 @default.
- W2779598520 cites W2030014051 @default.
- W2779598520 cites W2031794121 @default.
- W2779598520 cites W2035556179 @default.
- W2779598520 cites W2039718216 @default.
- W2779598520 cites W2041902442 @default.
- W2779598520 cites W2042321087 @default.
- W2779598520 cites W2044570485 @default.
- W2779598520 cites W2044609246 @default.
- W2779598520 cites W2044800216 @default.
- W2779598520 cites W2046528357 @default.
- W2779598520 cites W2049078586 @default.
- W2779598520 cites W2049811930 @default.
- W2779598520 cites W2053859880 @default.
- W2779598520 cites W2054351670 @default.
- W2779598520 cites W2054555017 @default.
- W2779598520 cites W2055400824 @default.
- W2779598520 cites W2056760934 @default.
- W2779598520 cites W2056947924 @default.
- W2779598520 cites W2057694845 @default.
- W2779598520 cites W2066902510 @default.
- W2779598520 cites W2072782801 @default.
- W2779598520 cites W2072847654 @default.
- W2779598520 cites W2076820995 @default.
- W2779598520 cites W2085768268 @default.
- W2779598520 cites W2088043058 @default.
- W2779598520 cites W2089559377 @default.
- W2779598520 cites W2091838795 @default.
- W2779598520 cites W2099138160 @default.
- W2779598520 cites W2107484526 @default.
- W2779598520 cites W2108090162 @default.
- W2779598520 cites W2108745054 @default.
- W2779598520 cites W2114004308 @default.
- W2779598520 cites W2125536352 @default.
- W2779598520 cites W2133414516 @default.
- W2779598520 cites W2146677871 @default.
- W2779598520 cites W2160043538 @default.
- W2779598520 cites W2168301448 @default.
- W2779598520 cites W2182407174 @default.
- W2779598520 cites W2564517383 @default.
- W2779598520 cites W3103568689 @default.
- W2779598520 cites W316784166 @default.
- W2779598520 cites W585634512 @default.
- W2779598520 cites W640180766 @default.
- W2779598520 cites W643527793 @default.
- W2779598520 cites W97171841 @default.
- W2779598520 cites W3145780045 @default.
- W2779598520 doi "https://doi.org/10.31390/gradschool_dissertations.3203" @default.
- W2779598520 hasPublicationYear "2022" @default.
- W2779598520 type Work @default.
- W2779598520 sameAs 2779598520 @default.
- W2779598520 citedByCount "0" @default.
- W2779598520 crossrefType "dissertation" @default.
- W2779598520 hasAuthorship W2779598520A5069201232 @default.
- W2779598520 hasBestOaLocation W27795985201 @default.
- W2779598520 hasConcept C107365816 @default.
- W2779598520 hasConcept C136525101 @default.
- W2779598520 hasConcept C141123601 @default.
- W2779598520 hasConcept C142724271 @default.
- W2779598520 hasConcept C154945302 @default.
- W2779598520 hasConcept C159985019 @default.
- W2779598520 hasConcept C171250308 @default.
- W2779598520 hasConcept C192562407 @default.